留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双荷子系统运动的经典解

许雪艳 陈海波 张宏彬 丁光涛

许雪艳, 陈海波, 张宏彬, 丁光涛. 双荷子系统运动的经典解[J]. 应用数学和力学, 2017, 38(9): 1061-1070. doi: 10.21656/1000-0887.380046
引用本文: 许雪艳, 陈海波, 张宏彬, 丁光涛. 双荷子系统运动的经典解[J]. 应用数学和力学, 2017, 38(9): 1061-1070. doi: 10.21656/1000-0887.380046
XU Xue-yan, CHEN Hai-bo, ZHANG Hong-bin, DING Guang-tao. Classical Solutions of Motion for Dyon Systems[J]. Applied Mathematics and Mechanics, 2017, 38(9): 1061-1070. doi: 10.21656/1000-0887.380046
Citation: XU Xue-yan, CHEN Hai-bo, ZHANG Hong-bin, DING Guang-tao. Classical Solutions of Motion for Dyon Systems[J]. Applied Mathematics and Mechanics, 2017, 38(9): 1061-1070. doi: 10.21656/1000-0887.380046

双荷子系统运动的经典解

doi: 10.21656/1000-0887.380046
基金项目: 国家自然科学基金(11472063);高校优秀青年人才支持计划重点项目(gxyqZD2016286)
详细信息
    作者简介:

    许雪艳(1976—),女,副教授,硕士(通讯作者. E-mail: xuxueyan2002@163.com).

  • 中图分类号: O302;O441

Classical Solutions of Motion for Dyon Systems

Funds: The National Natural Science Foundation of China(11472063)
  • 摘要: 根据力学理论和经典电磁理论研究双荷子系统的运动.列出双荷子系统的运动微分方程,导出运动积分,说明系统的对称性,包括SO(4)对称性;利用变分法逆问题方法,构造双荷子系统的Lagrange(拉格朗日)函数和Hamilton(哈密顿)函数;解出双荷子系统的运动规律.
  • [1] Dirac P A M. Quantised singularities in the electromagnetic field[J]. Proceedings of the Royal Society A: Mathematical Physical & Engineering Sciences,1931,133(821): 60-72.
    [2] Schwinger J. A magnetic model of matter[J]. Science,1969,165(3895): 757-761.
    [3] XU Bo-wei. On SO(4) symmetry of dyons system[J]. Physica Energiae Portis et Physica Nuclearis,1986,10(2): 249-253.
    [4] Ter-Antonyan V M, Nersessian A. Quantum oscillator and a bound system of two dyons[J]. Modern Physics Letters A,1995,10(34): 2633-2638.
    [5] Jackson J D. Classical Electrodynamics [M]. 3rd ed. New York: John & Wiley, 1998.
    [6] WANG Zhong-yue. Generalized momentum equation of quantum mechanics[J]. Optical and Quantum Electronics,2016,48(2): 107.
    [7] Jackson J D, Fox R F. Classical electrodynamics, 3rd ed[J]. American Journal of Physics,1999,67(9): 841.
    [8] Becker M, Caprez A, Batelaan H. On the classical coupling between gravity and electromagnetism[J]. Atoms,2015,3(3): 320-338.
    [9] LI Kang, CHEN Wen-jun, Naón C M. Classical electromagnetic field theory in the presence of magnetic sources[J]. Chinese Physics Letters,2003,20(3): 321-324.
    [10] Santilli R M. Birkhoffian generalization of Hamiltonian mechanics[J]. Journal of Forensic Sciences,1983,54(54):1034-1041.
    [11] Arbab A I. Complex Maxwell’s equations[J]. Chinese Physics B,2013,22(3): 030301-030304.
    [12] Goldstein H, Poole C, Safko J, et al. Classical mechanics, 3rd ed[J]. American Journal of Physics,2002,70(7): 782-783.
    [13] 丁光涛. 理论力学[M]. 合肥: 中国科学技术大学出版社, 2013.(DING Guang-tao. Theoretical Mechanics [M]. Hefei: University of Science and Technology of China Press, 2013.(in Chinese))
    [14] Santilli R M. Foundations of Theoretical Mechanics II: Birkhoffian Generalization of Hamiltonian Mechanics [M]. New York: Springer-Verlag, 1982.
    [15] HE Jin-man, XU Yan-li, LUO Shao-kai. Stability for manifolds of the equilibrium state of fractional Birkhoffian systems[J]. Acta Mechanica,2015,226(7): 2135-2146.
    [16] 丁光涛. 从第一积分构造Lagrange函数的直接方法[J]. 动力学与控制学报, 2011,9(2): 102-106.(DING Guang-tao. A direct approach to construction of the Lagrangian from the first integral[J]. Journal of Dynamics and Control,2011,9(2): 102-106.(in Chinese))
  • 加载中
计量
  • 文章访问数:  1205
  • HTML全文浏览量:  154
  • PDF下载量:  514
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-02-28
  • 修回日期:  2017-07-03
  • 刊出日期:  2017-09-15

目录

    /

    返回文章
    返回