留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

汽车电磁悬架系统的Noether对称性及其应用

崔新斌 傅景礼

崔新斌, 傅景礼. 汽车电磁悬架系统的Noether对称性及其应用[J]. 应用数学和力学, 2017, 38(12): 1331-1341. doi: 10.21656/1000-0887.380060
引用本文: 崔新斌, 傅景礼. 汽车电磁悬架系统的Noether对称性及其应用[J]. 应用数学和力学, 2017, 38(12): 1331-1341. doi: 10.21656/1000-0887.380060
CUI Xin-bin, FU Jing-li. Noether Symmetry of Automotive Electromagnetic Suspension Systems and Its Application[J]. Applied Mathematics and Mechanics, 2017, 38(12): 1331-1341. doi: 10.21656/1000-0887.380060
Citation: CUI Xin-bin, FU Jing-li. Noether Symmetry of Automotive Electromagnetic Suspension Systems and Its Application[J]. Applied Mathematics and Mechanics, 2017, 38(12): 1331-1341. doi: 10.21656/1000-0887.380060

汽车电磁悬架系统的Noether对称性及其应用

doi: 10.21656/1000-0887.380060
基金项目: 国家自然科学基金(11472247;11272287)
详细信息
    作者简介:

    崔新斌(1990—),男,硕士(E-mail: hzcuixinbin@163.com);傅景礼(1955—),男,教授,博士生导师(通讯作者. E-mail: sqfujingli@163.com).

  • 中图分类号: O316

Noether Symmetry of Automotive Electromagnetic Suspension Systems and Its Application

Funds: The National Natural Science Foundation of China(11472247;11272287)
  • 摘要: 研究了含有电磁悬架汽车振动系统的Noether对称性,给出了系统的守恒量,并通过守恒量求得系统的对称性解.以能量形式,建立汽车不同振动形式下的Lagrange(拉格朗日)方程.选取位移坐标为广义坐标,研究了各种振动形式下系统的Noether对称性,并给出相应的Noether恒等式、Killing方程和广义Noether定理.研究系统守恒量,运用存在的守恒量,给出一种新的求解汽车振动系统响应的方法;并应用到具体的车体振动系统计算中,给出了系统在转弯、制动或加速等情况下的位移响应和速度响应曲线.
  • [1] Thompson A. Design of active suspensions[J]. Proceedings of the Institution of Mechanical Engineers,1970,185(1): 553-563.
    [2] Sharp R S,Crolla D A. Road vehicle suspension system design-a review[J]. Vehicle System Dynamics,1987,16(3): 167-192.
    [3] 喻凡, 张勇超. 馈能型车辆主动悬架技术[J]. 农业机械学报, 2010,41(1): 1-6.(YU Fan, ZHANG Yong-chao. Technology of regenerative vehicle active suspensions[J]. Transactions of the Chinese Society for Agricultural Machinery,2010,41(1): 1-6.(in Chinese))
    [4] Gysen B L J, Paulides J J H, Janssen J L G, et al. Active electromagnetic suspension system for improved vehicle dynamics[J]. IEEE Transactions on Vehicular Technology,2010,59(3): 1156-1163.
    [5] Gysen B L J, Paulides J J H, Janssen J L G, et al. Design aspects of an active electromagnetic suspension system for automotive applications[J]. IEEE Transactions on Industry Applications,2008,45(5): 1589-1597.
    [6] 黄昆, 张勇超, 喻凡. 电动式主动馈能悬架综合性能的协调性优化[J]. 上海交通大学学报,2009,43(2): 226-230.(HUANG Kun, ZHANG Yong-chao, YU Fan. Coordinate optimization for synthetical performance of electrical energy-regenerative active suspension[J]. Journal of Shanghai Jiaotong University,2009,43(2): 226-230.(in Chinese))
    [7] ZHANG Yong-chao, CAO Jian-yong, ZHANG Guo-guang, et al. Robust controller design for an electromagnetic active suspension subjected to mixed uncertainties[J]. International Journal of Vehicle Design,2013,63(4): 423-449.
    [8] 梅凤翔. 分析力学[M]. 北京: 北京理工大学出版社, 2013.(MEI Feng-xiang. Analytical Mechanics [M]. Beijing: Bejing Institute of Technology Press, 2013.(in Chinese))
    [9] 邱家俊. 机电分析动力学[M]. 北京: 科学出版社, 1992.(QIU Jia-jun. Electromechanical Analytical Dynamics [M]. Beijing: Science Press,1992.(in Chinese))
    [10] 梅凤翔. 李群和李代数对约束力学系统的应用[M]. 北京: 科学出版社, 1999.(MEI Feng-xiang. Application of Lie Groups and Lie Algebras to Constrained Mechanical Systems [M]. Beijing: Science Press, 1999.(in Chinese))
    [11] 方建会. 二阶非完整力学系统的Lie对称性与守恒量[J]. 应用数学和力学, 2002,23(9): 982-986.(FANG Jiang-hui. Lie symmetries and conserved quantities of second-order nonholonomic mechanical system[J]. Applied Mathematics and Mechanics,2002,23(9): 982-986.(in Chinese))
    [12] 梅凤翔. 具有可积微分约束的力学系统的Lie对称性[J]. 力学学报, 2000,32(4): 466-472.(MEI Feng-xiang. Lie symmetries of mechanical system with integral differential constraints[J]. Acta Mechanica Sinica,2000,32(4): 466-472.(in Chinese))
    [13] 翟晓阳, 傅景礼. 汽车车体振动系统的对称性与守恒量研究[J]. 应用数学和力学, 2015,36(12): 1285-1293.(ZHAI Xiao-yang, FU Jing-li. Study on symmetries and conserved quantities of vehicle body vibration systems[J]. Applied Mathematics and Mechanics,2015,36(12): 1285-1293.(in Chinese))
    [14] Scherpen J M A, Klaassensi J B, Ballini L. Lagrangian modeling and control of DC-to-DC converters[C]// Proceedings of the INTELEC’〖STBX〗99 . Copenhagen, 1999: 99CH37007, 31-14.
    [15] Scherpen J M A, Jeltsema D, Klaassensi J B. Lagrangian modeling and control of switching networks with integrated coupled magnetics[C]//Proceedings of the 39th IEEE Conference on Decision and Control . Vol4. 2000: 4054-4059.
    [16] Stramigioli S.Modeling and IPC Control of Interactive Mechanical Systems—A Coordinate-Free Approach [M]. London: Springer, 2001.
    [17] 谢煜, 傅景礼, 陈本永. 压电堆叠作动器的对称性求解[J]. 应用数学和力学, 2016,37(8): 778-790.(XIE Yu, FU Jing-li, CHEN Ben-yong. Solution of symmetries for piezoelectric stack actuators[J]. Applied Mathematics and Mechanics,2016,37(8): 778-790.(in Chinese))
    [18] FU Jing-li, CHEN Li-qun. On Noether symmetries and form invariance of mechanico-electrical systems[J]. Physics Letters A,2004,331(3/4): 138-152.
    [19] Preumont A. Mechatronics: Dynamics of Electromechanical and Piezoelectric Systems [M]. Netherlands: Springe, 2006.
  • 加载中
计量
  • 文章访问数:  1140
  • HTML全文浏览量:  139
  • PDF下载量:  603
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-15
  • 修回日期:  2017-04-12
  • 刊出日期:  2017-12-15

目录

    /

    返回文章
    返回