[1] |
KREISS G, KREISS H O. Convergence to steady state of solution of Burgers’ equation[J]. Applied Numerical Mathematics,1986,2(3): 161-179.
|
[2] |
LAFORGUE J G L, O’MALLEY R E Jr. On the motion of viscous shocks and the supersensitivity of their steady-state limits[J]. Methods in Applied Analysis,1994,1(4): 465-487.
|
[3] |
LAFORGUE J G L, O’MALLEY R E Jr. Shock layer movement for Burgers’ equation[J]. SIAM Journal on Applied Mathematics,1994,55(2): 332-347.
|
[4] |
LAFORGUE J G L, O’MALLEY R E Jr. Viscous shock motion for advection-diffusion equations[J]. Studies in Applied Mathematics,1995,95(2): 147-170.
|
[5] |
LAFORGUE J G L, O’MALLEY R E Jr. Exponential asymptotics, the viscous Burgers’ equaton, and standing wave solutions for reaction-advection-diffusion model[J]. Studies in Applied Mathematics ,1999,102(2): 137-172.
|
[6] |
VILLARROEL J. The stochastic Burger’s equation in Ito’s sense[J]. Blackwell Publishing,2004,112(1): 87-100.
|
[7] |
XIU Dongbin, KARANIADAKIS G E. Supersensitivity due to uncertain boundary conditions[J]. Int J Numer Meth Engng,2004,61(12): 2114-2138.
|
[8] |
LE MAITRE O P, KNIOB O M, NAJM H N. A stochastic projection method for fluid flow: I. basic formulation[J].Journal of Computational Physics,2001,173(2): 481-511.
|
[9] |
高飞. 随机Burgers方程的格子Boltzmann模拟[D]. 硕士学位论文. 武汉: 华中科技大学, 2013.(GAO Fei. Lattice Boltzmann simulation of stochastic Burgers equation[D]. Master Thesis. Wuhan: Huazhong University of Science and Technology, 2013.(in Chinese))
|
[10] |
付新刚. 广义Burgers方程的随机超敏感现象的数值研究[D]. 硕士学位论文. 青岛: 中国海洋大学, 2009: 483-486.(FU Xingang. Numerical study of stochastic supersensitivity of generalized Burgers equation[D]. Master Thesis. Qingdao: Ocean University of China, 2009: 483-486.(in Chinese))
|
[11] |
VILLARROEL J. Stochastic perturbations of line solitons of KP[J]. Theoretical and Mathematical Physics,2003,137(3): 1753-1765.
|
[12] |
XUE J K. A spherical KP equation for dust acoustic waves[J]. Physics Letters A,2003,314(5/6): 479-483.
|
[13] |
YERMAKOU V, SUCCI S. A fluctuation lattice Boltzman scheme for the one-dimensional KPZ equation[J]. Phys A: Statistical Mechanics Its Applications,2012,391(20): 4557-4563.
|
[14] |
GHANMI I, JEBARI R, BOUKRICHA A. Numerical solution of the (3+1)-dimensional KP equation with initial condition by homotopy perturbation method[J]. International Journal of Contemporary Mathematical Sciences,2012(41/44): 2089-2098.
|
[15] |
CHAKRAVARTY S, KODAMA Y. Line-soliton solutions of the KP equation[C]// AIP Conference Proceedings 1212.2010: 312-341.
|
[16] |
伍卓群, 尹景学. 椭圆与抛物型方程引论[M]. 北京: 科学出版社, 2003: 44-56, 80-85.(WU Zhuoqun, YIN Jingxue. Introduction of Ellipse and Parabolic Equation [M]. Beijing: Science Press, 2003: 44-56, 80-85.(in Chinese))
|