留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一维弱噪声随机Burgers方程的奇摄动解

包立平 洪文珍

包立平, 洪文珍. 一维弱噪声随机Burgers方程的奇摄动解[J]. 应用数学和力学, 2018, 39(1): 113-122. doi: 10.21656/1000-0887.380068
引用本文: 包立平, 洪文珍. 一维弱噪声随机Burgers方程的奇摄动解[J]. 应用数学和力学, 2018, 39(1): 113-122. doi: 10.21656/1000-0887.380068
BAO Liping, HONG Wenzhen. Singular Perturbation Solutions to 1D Stochastic Burgers Equations Under Weak Noises[J]. Applied Mathematics and Mechanics, 2018, 39(1): 113-122. doi: 10.21656/1000-0887.380068
Citation: BAO Liping, HONG Wenzhen. Singular Perturbation Solutions to 1D Stochastic Burgers Equations Under Weak Noises[J]. Applied Mathematics and Mechanics, 2018, 39(1): 113-122. doi: 10.21656/1000-0887.380068

一维弱噪声随机Burgers方程的奇摄动解

doi: 10.21656/1000-0887.380068
基金项目: 国家自然科学基金(51175134)
详细信息
    作者简介:

    包立平(1962—),男,副教授,博士(通讯作者. E-mail: baolp@hdu.edu.cn);洪文珍(1991—),女,硕士生.

  • 中图分类号: O175.26|O211.63

Singular Perturbation Solutions to 1D Stochastic Burgers Equations Under Weak Noises

Funds: The National Natural Science Foundation of China(51175134)
  • 摘要: 讨论了一类有界区域上具有有色噪声干扰的随机Burgers方程奇摄动解,其波动率服从弱噪声Ornstein-Uhlenbeck(OU)过程由波运动的转移概率密度函数满足的后向Kolmogorov方程,得到随机Burgers的期望所满足的后向Kolmogorov方程由于期望满足的后向Kolmogorov方程的初边值问题条件涉及到一类确定性Burgers方程的解,因此该问题实际上是Burgers方程和Kolmogorov方程的联立形式首先,应用奇摄动方法,对一类确定性Burgers方程进行了正则渐近展开,由Schauder估计、Ascoli-Arzela 定理证明了非线性抛物方程渐近解的有界性与存在性,由Lax-Milgram定理证明了线性抛物方程渐近解的有界性与存在性,得到波速率的形式渐近解其次,由奇摄动理论,对期望满足的方程进行了奇摄动渐近展开和边界层矫正,由二阶线性偏微分方程理论,得到边界层函数渐近解存在且有界应用极值原理、De-Giorgi迭代技术分别证明了波速率和波期望渐近解的余项有界,得到渐近解的一致有效性.
  • [1] KREISS G, KREISS H O. Convergence to steady state of solution of Burgers’ equation[J]. Applied Numerical Mathematics,1986,2(3): 161-179.
    [2] LAFORGUE J G L, O’MALLEY R E Jr. On the motion of viscous shocks and the supersensitivity of their steady-state limits[J]. Methods in Applied Analysis,1994,1(4): 465-487.
    [3] LAFORGUE J G L, O’MALLEY R E Jr. Shock layer movement for Burgers’ equation[J]. SIAM Journal on Applied Mathematics,1994,55(2): 332-347.
    [4] LAFORGUE J G L, O’MALLEY R E Jr. Viscous shock motion for advection-diffusion equations[J]. Studies in Applied Mathematics,1995,95(2): 147-170.
    [5] LAFORGUE J G L, O’MALLEY R E Jr. Exponential asymptotics, the viscous Burgers’ equaton, and standing wave solutions for reaction-advection-diffusion model[J]. Studies in Applied Mathematics ,1999,102(2): 137-172.
    [6] VILLARROEL J. The stochastic Burger’s equation in Ito’s sense[J]. Blackwell Publishing,2004,112(1): 87-100.
    [7] XIU Dongbin, KARANIADAKIS G E. Supersensitivity due to uncertain boundary conditions[J]. Int J Numer Meth Engng,2004,61(12): 2114-2138.
    [8] LE MAITRE O P, KNIOB O M, NAJM H N. A stochastic projection method for fluid flow: I. basic formulation[J].Journal of Computational Physics,2001,173(2): 481-511.
    [9] 高飞. 随机Burgers方程的格子Boltzmann模拟[D]. 硕士学位论文. 武汉: 华中科技大学, 2013.(GAO Fei. Lattice Boltzmann simulation of stochastic Burgers equation[D]. Master Thesis. Wuhan: Huazhong University of Science and Technology, 2013.(in Chinese))
    [10] 付新刚. 广义Burgers方程的随机超敏感现象的数值研究[D]. 硕士学位论文. 青岛: 中国海洋大学, 2009: 483-486.(FU Xingang. Numerical study of stochastic supersensitivity of generalized Burgers equation[D]. Master Thesis. Qingdao: Ocean University of China, 2009: 483-486.(in Chinese))
    [11] VILLARROEL J. Stochastic perturbations of line solitons of KP[J]. Theoretical and Mathematical Physics,2003,137(3): 1753-1765.
    [12] XUE J K. A spherical KP equation for dust acoustic waves[J]. Physics Letters A,2003,314(5/6): 479-483.
    [13] YERMAKOU V, SUCCI S. A fluctuation lattice Boltzman scheme for the one-dimensional KPZ equation[J]. Phys A: Statistical Mechanics Its Applications,2012,391(20): 4557-4563.
    [14] GHANMI I, JEBARI R, BOUKRICHA A. Numerical solution of the (3+1)-dimensional KP equation with initial condition by homotopy perturbation method[J]. International Journal of Contemporary Mathematical Sciences,2012(41/44): 2089-2098.
    [15] CHAKRAVARTY S, KODAMA Y. Line-soliton solutions of the KP equation[C]// AIP Conference Proceedings 1212.2010: 312-341.
    [16] 伍卓群, 尹景学. 椭圆与抛物型方程引论[M]. 北京: 科学出版社, 2003: 44-56, 80-85.(WU Zhuoqun, YIN Jingxue. Introduction of Ellipse and Parabolic Equation [M]. Beijing: Science Press, 2003: 44-56, 80-85.(in Chinese))
  • 加载中
计量
  • 文章访问数:  1347
  • HTML全文浏览量:  216
  • PDF下载量:  670
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-24
  • 修回日期:  2017-06-11
  • 刊出日期:  2018-01-15

目录

    /

    返回文章
    返回