留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复杂固体并式微结构模型及孤立波的存在性

那仁满都拉

那仁满都拉. 复杂固体并式微结构模型及孤立波的存在性[J]. 应用数学和力学, 2018, 39(1): 41-49. doi: 10.21656/1000-0887.380074
引用本文: 那仁满都拉. 复杂固体并式微结构模型及孤立波的存在性[J]. 应用数学和力学, 2018, 39(1): 41-49. doi: 10.21656/1000-0887.380074
NARANMANDULA. A Concurrent Microstructured Model for Complex Solids and Existence of Solitary Waves[J]. Applied Mathematics and Mechanics, 2018, 39(1): 41-49. doi: 10.21656/1000-0887.380074
Citation: NARANMANDULA. A Concurrent Microstructured Model for Complex Solids and Existence of Solitary Waves[J]. Applied Mathematics and Mechanics, 2018, 39(1): 41-49. doi: 10.21656/1000-0887.380074

复杂固体并式微结构模型及孤立波的存在性

doi: 10.21656/1000-0887.380074
基金项目: 国家自然科学基金(11462019)
详细信息
    作者简介:

    那仁满都拉(1963—),男,教授,博士,硕士生导师(E-mail: nrmdltl@126.com).

  • 中图分类号: O331|O347

A Concurrent Microstructured Model for Complex Solids and Existence of Solitary Waves

Funds: The National Natural Science Foundation of China(11462019)
  • 摘要: 把复杂固体看作具有两种不同性质的微结构,进而考虑两种微尺度非线性效应,建立了描述复杂固体运动的并式微结构非线性模型.利用动力系统的定性分析理论和分岔理论,证明了在一定条件下并式微结构固体中可以存在一类非对称孤立波并给出了其存在条件.分析表明两种微尺度非线性效应同时影响孤立波的对称特性,微尺度非线性效应越强,孤立波的非对称特性越明显.最后用数值方法进一步验证了定性分析结果.
  • [1] ENGELBRECHT J, BEREZOVSKI A. Internal structures and internal variables in solids[J]. Journal of Mechanics of Materials and Structures,2012,7(10): 983-996.
    [2] BEREZOVSKI A, ENGELBRECHT J, PEETS T. Multiscale modeling of microstructured solids[J]. Mechanics Research Communications,2010,37(6): 531-534.
    [3] BEREZOVSKI A, ENGELBRECHT J, SALUPERE A, et al. Dispersive waves in microstructured solids[J]. International Journal of Solids and Structures,2013,50(11/12): 1981-1990.
    [4] PASTRONE F, ENGELBRECHT J. Nonlinear waves and solitons in complex solids[J]. Mathematics and Mechanics of Solids,2016,21(1): 52-59.
    [5] CASASSO A, PASTRONE F. Wave propagation in solids with vectorial microstructures[J]. Wave Motion,2010,47(6): 358-369.
    [6] ENGELBRECHT J, BEREZOVSKI A. Reflections on mathematical models of deformation waves in elastic microstructured solids[J]. Mathematics and Mechanics of Complex Systems,2015,3: 43-82.
    [7] 张丽俊, 陈立群. 一类高阶非线性波方程的子方程与精确行波解[J]. 应用数学和力学, 2015,36(5): 548-554.(ZHANG Lijun, CHEN Liqun. Sub-equations and exavt traveling wave solutions to a class of high-order nonlinear wave equations[J]. Applied Mathematics and Mechanics,2015,36(5): 548-554.(in Chinese))
    [8] 王恒, 王汉权, 陈龙伟, 等. 耦合Higgs方程和Maccari系统的行波解分支[J]. 应用数学和力学, 2016,37(4): 434-440.(WANG Heng, WANG Hanquan, CHEN Longwei, et al. Bifurcations of exact travelling wave solutions to coupled Higgs equations and Maccari systems[J].Applied Mathematics and Mechanics,2016,37(4): 434-440.(in Chinese))
    [9] LI Jibin.Singular Traveling Wave Equations: Bifurcations and Exact Solutions [M]. Beijing: Science Press, 2013.
    [10] LI Jibin. Bifurcations of traveling wave solutions in a microstructured solid model[J]. International Journal of Bifurcation and Chaos,2013,23(1): 1350009-1-1350009-18.
    [11] LI Jibin, DAI Huihui. On the Study of Singular Traveling Wave Equations: Dynamical System Approach [M]. Beijing: Science Press, 2007.
    [12] 谢怡, 王砚. 高度非线性孤立波与弹性大板的耦合作用研究[J]. 固体力学学报, 2017,38(1): 65-73.(XIE Yi, WANG Yan. The coupling mechanism between highly nonlinear solitary waves with large plate[J]. Chinese Journal of Solid Mechanics,2017,38(1): 65-73.(in Chinese))
    [13] YANG J, RESTUCCIA F, DARAIO C. Highly nonlinear granular crystal sensor and actuator for delamination detection in composite structures[J]. Structure Health Monitoring,2013,2: 1424-1433.
    [14] JANNO J, ENGELBRECHT J. Solitary waves in nonlinear microstructured materials[J]. Journal of Physics A: Mathematical and General,2005,38: 5159-5172.
    [15] SALUPERE A, TAMM K. On the influence of material properties on the wave propagation in Mindlin-type microstructured solids[J]. Wave Motion,2013,50(7): 1127-1139.
    [16] 那仁满都拉. 微结构固体中的孤立波及其存在条件[J]. 物理学报, 2014,63(19): 194301-1-194301-8.(NARANMANDULA. Solitary waves and their existence conditions in microstructured solids[J]. Acta Physica Sinica,2014,63(19): 194301-1-194301-8.(in Chinese))
  • 加载中
计量
  • 文章访问数:  835
  • HTML全文浏览量:  110
  • PDF下载量:  634
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-31
  • 修回日期:  2017-05-21
  • 刊出日期:  2018-01-15

目录

    /

    返回文章
    返回