留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Hausdorff分形导数Richards方程的土壤入渗率和水文模型类型

陈文 梁英杰 杨旭

陈文, 梁英杰, 杨旭. 基于Hausdorff分形导数Richards方程的土壤入渗率和水文模型类型[J]. 应用数学和力学, 2018, 39(1): 77-82. doi: 10.21656/1000-0887.380101
引用本文: 陈文, 梁英杰, 杨旭. 基于Hausdorff分形导数Richards方程的土壤入渗率和水文模型类型[J]. 应用数学和力学, 2018, 39(1): 77-82. doi: 10.21656/1000-0887.380101
CHEN Wen, LIANG Yingjie, YANG Xu. Soil Infiltration Rates and Hydrology Model Classifications Based on the Hausdorff Fractal Derivative Richards Equation[J]. Applied Mathematics and Mechanics, 2018, 39(1): 77-82. doi: 10.21656/1000-0887.380101
Citation: CHEN Wen, LIANG Yingjie, YANG Xu. Soil Infiltration Rates and Hydrology Model Classifications Based on the Hausdorff Fractal Derivative Richards Equation[J]. Applied Mathematics and Mechanics, 2018, 39(1): 77-82. doi: 10.21656/1000-0887.380101

基于Hausdorff分形导数Richards方程的土壤入渗率和水文模型类型

doi: 10.21656/1000-0887.380101
基金项目: 国家自然科学基金(11402214;51375402;11572264;61773004); 四川省青年科技创新研究团队(2017TD0035;2017TD0026;2015TD0021;2016HH0010); 四川省教育厅自然科学重点项目(17ZA0364); 浙江省自然科学基金(LY14E08006); 教育部“春晖计划”合作科研项目(Z2014075);重庆创新团队项目(CXTDX201601022)
详细信息
    作者简介:

    陈文(1967—),男,教授,博士,博士生导师(E-mail: chenwen@hhu.edu.cn);梁英杰(1988—),男,讲师,博士(通讯作者. E-mail: liangyj@hhu.edu.cn);杨旭(1990—),男,博士生(E-mail: yangxu@hhu.edu.cn).

  • 中图分类号: O35|TV11|O175

Soil Infiltration Rates and Hydrology Model Classifications Based on the Hausdorff Fractal Derivative Richards Equation

Funds: The National Natural Science Foundation of China(11402214;51375402;11572264;61773004)
  • 摘要: 基于Hausdorff(豪斯道夫)分形导数Richards方程,推导了土壤入渗率与时间的关系。该模型仅有两个参数,其中Hausdorff分形导数的阶数α能够表征水分在土壤中扩散环境的力学特征,刻画土壤结构的非均质性质,而土壤孔径分布指标λ决定了不同水文模型的类型。通过两个算例,观察到当Hausdorff导数的分形维α≠1时,入渗率表现出一定的记忆性,即α的值越小,入渗率随时间的变化越慢,记忆性越强;且同时反映出水分入渗的扩散环境愈加偏离经典模型的理想状态.土壤孔径分布指标λ的值越小,土壤水分渗透的速率越慢,该参数是反映土壤渗流特征的一个基本指标.
  • [1] 杜世鹏, 王船海, 王裕充, 等. 基于饱和-非饱和流动理论的土壤水运动模拟[J]. 水力发电, 2015,41(1): 11-14.(DU Shipeng, WANG Chuanhai, WANG Yuchong, et al. Soil water simulation based on saturated and unsaturated flow theory[J]. Water Power,2015,41(1): 11-14.(in Chinese))
    [2] 曾刚. 非饱和土渗透方法及渗流参数反演[D]. 硕士学位论文. 宜昌: 三峡大学, 2013.(ZENG Gang. Permeate method of unsaturated soil and seepage parameters inversion[D]. Master Thesis. Yichang: China Three Gorges University, 2013.(in Chinese))
    [3] MIKKELSEN P S, HFLIGER M, OCHS M, et al. Pollution of soil and groundwater from infiltration of highly contaminated stormwater—a case study[J]. Water Science and Technology,1997,36(8/9): 325-330.
    [4] PAVCHICH M P, STUL’KEVICH A V. Piezometric observations and the determination of integral parameters for local and general infiltration in a dam-base system[J]. Power Technology and Engineering,2001,35(9): 486-490.
    [5] MASSELINK G, RUSSELL P. Flow velocities, sediment transport and morphological change in the swash zone of two contrasting beaches[J]. Marine Geology,2006,227(3/4): 227-240.
    [6] ANDO Y, SUDA K, KONISHI S, et al. Rigid plastic FE slope stability analysis combined with rain fall water infiltration[J]. Japanese Geotechnical Society Special Publication,2015,1(3): 23-28.
    [7] ZENG Xubin, DECKER M. Improving the numerical solution of soil moisture-based Richards equation for land models with a deep or shallow water table[J]. Journal of Hydrometeorology,2010,10(1): 308-319.
    [8] RICHARDS L A. Capillary conduction of liquids through porous mediums[J]. Journal of Applied Physics,1931,1(5): 318-333.
    [9] 〖JP2〗PACHEPSKY Y, TIMLIN D, RAWLS W. Generalized Richards’ equation to simulate water transport in unsaturated soils[J]. Journal of Hydrology,2003,272(1/4): 3-13.
    [10] FILIPOVITCH N, HILL K M, LONGJAS A, et al. Infiltration experiments demonstrate an explicit connection between heterogeneity and anomalous diffusion behavior[J]. Water Resources Research,2016,52(7): 5167-5178.
    [11] GEROLYMATOU E, VARDOULAKIS I, HILFER R. Modelling infiltration by means of a nonlinear fractional diffusion model[J]. Journal of Physics D: Applied Physics,2006,39(18): 4104-4110.
    [12] ABD E G E A, MILCZAREK J J. Neutron radiography study of water absorption in porous building materials: anomalous diffusion analysis[J]. Journal of Physics D: Applied Physics,2004,37(16): 2305-2313.
    [13] SUN Hongguang, MEERSCHAERT M M, ZHANG Yong, et al. A fractal Richards’ equation to capture the non-Boltzmann scaling of water transport in unsaturated media[J]. Advances in Water Resources,2013,52(4): 292-295.
    [14] MISHRA S K, SINGH V P. Soil Conservation Service Curve Number (SCS-CN) Methodology [M]. Netherlands: Springer, 2003.
    [15] ZHAO Renjun. The Xinanjiang model applied in China[J]. Journal of Hydrology,1992,135(1/4): 371-381.
    [16] HOOSHYAR M, WANG Dingbao. An analytical solution of Richards’ equation providing the physical basis of SCS curve number method and its proportionality relationship[J]. Water Resources Research,2016,52(8): 6611-6620.
    [17] CHEN W. Time-space fabric underlying anomalous diffusion[J]. Chaos, Solitons & Fractals,2006,28(4): 923-929.
  • 加载中
计量
  • 文章访问数:  1022
  • HTML全文浏览量:  157
  • PDF下载量:  744
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-17
  • 修回日期:  2017-05-31
  • 刊出日期:  2018-01-15

目录

    /

    返回文章
    返回