[1] |
Censor Y, Bortfeld T, Martin B, et al. A unified approach for inversion problems in intensity-modulated radiation therapy[J]. Physics in Medicine and Biology,2006,51(10): 2253-2365.
|
[2] |
Censor Y, Elfving T, Kopf N, et al. The multiple-sets split feasibility problem and its applications for inverse problems[J]. Inverse Problems,2005,21(6): 2071-2084.
|
[3] |
Censor Y, Motiva A, Segal A. Perturbed projections and subgradient projections for the multiple-sets split feasibility problem[J]. Journal of Mathematical Analysis and Applications,2007,327(2): 1244-1256.
|
[4] |
Censor Y, Elfving T. A multiprojection algorithm using Bregman projections in a product space[J]. Numerical Algorithms,1994,8(2): 221-239.
|
[5] |
XU Hong-kun. Iterative methods for the split feasibility problem in infinite-dimensional Hilbert spaces[J]. Inverse Problems,2010,26(10): 1-17.
|
[6] |
TANG Yu-chao, LIU Li-wei. Iterative methods of strong convergence theorems for the split feasibility problem in Hilbert spaces[J]. Journal of Inequalities and Applications,2016(1): 2-14. doi: 10.1186/s13660-016-1228-4.
|
[7] |
XU Hong-kun. A variable Krasnosel’skiǐ-Mann algorithm and the multiple-set split feasibility problem[J]. Inverse Problems,2006,22(6): 2021-2034.
|
[8] |
YANG Qing-zhi. The relaxed CQ algorithm solving the split feasibility problem[J]. Inverse Problems,2004,20(4): 1261-1266.
|
[9] |
YANG Qing-zhi, ZHAO Jin-ling. Generalized KM-theorems and their applications[J]. Inverse Problems,2006,22(3): 833-844.
|
[10] |
Byrne C. Iterative oblique projection onto convex sets and the split feasibility problem[J]. Inverse Problems,2002,18(2): 441-453.
|
[11] |
XU Hong-kun. Viscosity approximation methods for nonexpansive mappings[J]. Journal of Mathematical Analysis and Applications,2004,298(1): 279-291.
|
[12] |
Deepho J, Kumam P. A viscosity approximation method for the split feasibility problems[J]. Transactions on Engineering Technologies,2014,2(6): 69-77.
|
[13] |
WANG Feng-hui, XU Hong-kun. Approximating curve and strong convergence of the CQ algorithm for the split feasibility problem[J]. Journal of Inequalities and Applications,2010(1): 1-13. doi: 10.1155/2010/102085.
|
[14] |
XU Hong-kun. Iterative algorithms for nonlinear operators[J]. Journal of the London Mathematical Society,2002,66(1): 240-256.
|
[15] |
Goebel K, Kirk W A. Topics in Metric Fixed Point Theory [M]. Cambridge: Cambridge University Press, 1990.
|