留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Hilbert空间中分裂可行性问题的改进Halpern迭代和黏性逼近算法

杨丽 李军

杨丽, 李军. Hilbert空间中分裂可行性问题的改进Halpern迭代和黏性逼近算法[J]. 应用数学和力学, 2017, 38(9): 1072-1080. doi: 10.21656/1000-0887.380106
引用本文: 杨丽, 李军. Hilbert空间中分裂可行性问题的改进Halpern迭代和黏性逼近算法[J]. 应用数学和力学, 2017, 38(9): 1072-1080. doi: 10.21656/1000-0887.380106
YANG Li, LI Jun. Modified Halpern Iteration and Viscosity Approximation Methods for Split Feasibility Problems in Hilbert Spaces[J]. Applied Mathematics and Mechanics, 2017, 38(9): 1072-1080. doi: 10.21656/1000-0887.380106
Citation: YANG Li, LI Jun. Modified Halpern Iteration and Viscosity Approximation Methods for Split Feasibility Problems in Hilbert Spaces[J]. Applied Mathematics and Mechanics, 2017, 38(9): 1072-1080. doi: 10.21656/1000-0887.380106

Hilbert空间中分裂可行性问题的改进Halpern迭代和黏性逼近算法

doi: 10.21656/1000-0887.380106
基金项目: 国家自然科学基金(11371015);四川省高校科研创新团队项目(16TD0019)
详细信息
    作者简介:

    杨丽(1980—), 女,讲师,硕士(通讯作者. E-mail: yangli@cwnu.edu.cn);李军(1974—), 男,教授,博士(E-mail: junli1026@163.com).

  • 中图分类号: O177.19

Modified Halpern Iteration and Viscosity Approximation Methods for Split Feasibility Problems in Hilbert Spaces

Funds: The National Natural Science Foundation of China(11371015)
  • 摘要: 在无限维Hilbert空间中,提出了求解分裂可行性问题(SFP)的改进Halpern迭代和黏性逼近算法,证明了当参数满足一定条件时,由给定算法生成的序列强收敛到分裂可行性问题的一个解.这些结论推广了Deepho和Kumam近年来的一些结果
  • [1] Censor Y, Bortfeld T, Martin B, et al. A unified approach for inversion problems in intensity-modulated radiation therapy[J]. Physics in Medicine and Biology,2006,51(10): 2253-2365.
    [2] Censor Y, Elfving T, Kopf N, et al. The multiple-sets split feasibility problem and its applications for inverse problems[J]. Inverse Problems,2005,21(6): 2071-2084.
    [3] Censor Y, Motiva A, Segal A. Perturbed projections and subgradient projections for the multiple-sets split feasibility problem[J]. Journal of Mathematical Analysis and Applications,2007,327(2): 1244-1256.
    [4] Censor Y, Elfving T. A multiprojection algorithm using Bregman projections in a product space[J]. Numerical Algorithms,1994,8(2): 221-239.
    [5] XU Hong-kun. Iterative methods for the split feasibility problem in infinite-dimensional Hilbert spaces[J]. Inverse Problems,2010,26(10): 1-17.
    [6] TANG Yu-chao, LIU Li-wei. Iterative methods of strong convergence theorems for the split feasibility problem in Hilbert spaces[J]. Journal of Inequalities and Applications,2016(1): 2-14. doi: 10.1186/s13660-016-1228-4.
    [7] XU Hong-kun. A variable Krasnosel’skiǐ-Mann algorithm and the multiple-set split feasibility problem[J]. Inverse Problems,2006,22(6): 2021-2034.
    [8] YANG Qing-zhi. The relaxed CQ algorithm solving the split feasibility problem[J]. Inverse Problems,2004,20(4): 1261-1266.
    [9] YANG Qing-zhi, ZHAO Jin-ling. Generalized KM-theorems and their applications[J]. Inverse Problems,2006,22(3): 833-844.
    [10] Byrne C. Iterative oblique projection onto convex sets and the split feasibility problem[J]. Inverse Problems,2002,18(2): 441-453.
    [11] XU Hong-kun. Viscosity approximation methods for nonexpansive mappings[J]. Journal of Mathematical Analysis and Applications,2004,298(1): 279-291.
    [12] Deepho J, Kumam P. A viscosity approximation method for the split feasibility problems[J]. Transactions on Engineering Technologies,2014,2(6): 69-77.
    [13] WANG Feng-hui, XU Hong-kun. Approximating curve and strong convergence of the CQ algorithm for the split feasibility problem[J]. Journal of Inequalities and Applications,2010(1): 1-13. doi: 10.1155/2010/102085.
    [14] XU Hong-kun. Iterative algorithms for nonlinear operators[J]. Journal of the London Mathematical Society,2002,66(1): 240-256.
    [15] Goebel K, Kirk W A. Topics in Metric Fixed Point Theory [M]. Cambridge: Cambridge University Press, 1990.
  • 加载中
计量
  • 文章访问数:  1053
  • HTML全文浏览量:  216
  • PDF下载量:  466
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-20
  • 修回日期:  2017-06-14
  • 刊出日期:  2017-09-15

目录

    /

    返回文章
    返回