留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于微分几何的蛇板系统动力学建模与运动规划

姚其家 戈新生

姚其家, 戈新生. 基于微分几何的蛇板系统动力学建模与运动规划[J]. 应用数学和力学, 2018, 39(1): 29-40. doi: 10.21656/1000-0887.380107
引用本文: 姚其家, 戈新生. 基于微分几何的蛇板系统动力学建模与运动规划[J]. 应用数学和力学, 2018, 39(1): 29-40. doi: 10.21656/1000-0887.380107
YAO Qijia, GE Xinsheng. Dynamics Modeling and Motion Planning for Snakeboard Systems Based on Differential Geometry[J]. Applied Mathematics and Mechanics, 2018, 39(1): 29-40. doi: 10.21656/1000-0887.380107
Citation: YAO Qijia, GE Xinsheng. Dynamics Modeling and Motion Planning for Snakeboard Systems Based on Differential Geometry[J]. Applied Mathematics and Mechanics, 2018, 39(1): 29-40. doi: 10.21656/1000-0887.380107

基于微分几何的蛇板系统动力学建模与运动规划

doi: 10.21656/1000-0887.380107
基金项目: 国家自然科学基金(11472058)
详细信息
    作者简介:

    姚其家(1991—),男,硕士生(E-mail: qijia_yao@126.com);戈新生(1957—),男,教授,博士(通讯作者. E-mail: gebim@vip.sina.com).

  • 中图分类号: TH113

Dynamics Modeling and Motion Planning for Snakeboard Systems Based on Differential Geometry

Funds: The National Natural Science Foundation of China(11472058)
  • 摘要: 研究了蛇板系统的动力学建模与运动规划问题,提出一种遗传算法与Gauss伪谱法相结合的混合优化策略.首先,基于微分几何中的Riemann(黎曼)流形与仿射映射理论,建立蛇板系统在其构型流形上的Euler-Lagrange(欧拉拉格朗日)方程.蛇板的构型空间对应流形空间,速度空间对应流形切空间,力矩空间对应流形余切空间,惯量矩阵提供了流形空间上的一个Riemann度量.构造适当的基底描述蛇板系统的许可速度,可以使蛇板系统的运动方程得到简化.然后,利用Gauss伪谱法将蛇板系统运动规划问题离散为非线性规划问题,利用序列二次规划算法求解蛇板系统的运动轨迹与最优控制输入,其中,Gauss伪谱法的初值通过遗传算法得到.最后,通过数值仿真,蛇板系统的运动轨迹与实际情况吻合,最优控制输入也能很好地满足约束条件,验证了该混合优化策略的有效性.
  • [1] OSTROWSKI J P, BURDICK J W. Controllability tests for mechanical systems with constraints and symmetries[J]. Journal of Applied Mathematics and Computer Science,1997,7(2): 101-127.
    [2] OSTROWSKI J P, DESAI J P, KUMAR V. Optimal gait selection for nonholonomic locomotion systems[J]. The International Journal of Robotics Research,1999,19(3): 225-237.
    [3] OSTROWSKI J P. Steering for a class of dynamic nonholonomic systems[J]. IEEE Transactions on Automatic Control,2000,45(8): 1492-1498.
    [4] LEWIS A D. Simple mechanical control systems with constraints[J]. IEEE Transactions on Automatic Control,2000,45(8): 1420-1436.
    [5] BULLO F, EFRAN M. On mechanical control systems with nonholonomic constraints and symmetries[J]. Systems & Control Letters,2002,45(2): 133-143.
    [6] BULLO F, LEWIS A D. Kinematic controllability and motion planning for the snakeboard[J]. IEEE Transactions on Robotics and Automation,2003,19(3): 494-498.
    [7] ASNAFI A R, MAHZOON M. Some flower-like gaits in the snakeboard’s locomotion[J]. Nonlinear Dynamics,2007,48(1/2): 77-89.
    [8] SHAMMAS E A, DE OLIVEIRA M. Motion planning for the snakeboard[J]. The International Journal of Robotics Research,2012,31(7): 872-885.
    [9] 刘延柱, 苗英恺. 活力板运动的动力学分析[J]. 力学与实践, 2008,30(3): 60-62.(LIU Yanzhu, MIAO Yingkai. Dynamic analysis of the motion of vigor board[J]. Mechanics in Engineering,2008,30(3): 60-62.(in Chinese))
    [10] 丁洁玉, 潘振宽. 非完整约束多体系统时间离散变分积分法[J]. 动力学与控制学报, 2011,9(4): 289-292.(DING Jieyu, PAN Zhenkuan. Time-discrete variational integrator for multibody dynamic systems with nonholonomic constraints[J]. Journal of Dynamics and Control,2011,9(4): 289-292.(in Chinese))
    [11] 郭宪, 马书根, 李斌, 等. 基于微分几何的蛇形机器人动力学与控制统一模型[J]. 中国科学: 信息科学, 2015,45(8): 1080-1094.(GUO Xian, MA Shugen, LI Bin, et al. Dynamics-control unified model of a snakelike robot based on differential geometry[J]. Scientia Sinica: Informationis,2015,45(8): 1080-1094.(in Chinese))
    [12] 郭宪, 马书根, 李斌, 等. 基于动力学与控制统一模型的蛇形机器人速度跟踪控制方法研究[J]. 自动化学报, 2015,41(11): 1847-1856.(GUO Xian, MA Shugen, LI Bin, et al. Velocity tracking control of a snake-like robot with a dynamics and control unified model[J]. Acta Automatica Sinica,2015,41(11): 1847-1856.(in Chinese))
    [13] 唐国金, 罗亚中, 雍恩米. 航天器轨迹优化理论、方法及应用[M]. 北京: 科学出版社, 2012.(TANG Guojin, LUO Yazhong, YONG Enmi. Spacecraft Trajectory Optimization Theory, Method and Application [M]. Beijing: Science Press, 2012.(in Chinese))
    [14] ELNAGAR G, KAZEMI M A, RGZZAGHI M. The pseudospectral Legendre method for discretizing optimal control problems[J]. IEEE Transactions on Automatic Control,1995,40(10): 1793-1796.
    [15] BENSON D A. A Gauss pseudospectral transcription for optimal control[D]. PhD Thesis. Cambridge: Massachusetts Institute of Technology, 2005.
    [16] BENSON D A, HUNTINGTON G T, THORVALDSEN T P, et al. Direct trajectory optimization and costate estimation via an orthogonal collocation method[J]. Journal of Guidance, Control, and Dynamics,2006,29(6): 1435-1439.
    [17] HUNTINGTON G T, RAO A V. Optimal reconfiguration of spacecraft formations using the Gauss pseudospectral method[J]. Journal of Guidance, Control, and Dynamics,2008,31(3): 689-698.〖JP〗
    [18] 廖一寰, 李道奎, 唐国金. 基于混合规划策略的空间机械臂运动规划研究[J]. 宇航学报, 2011,32(1): 98-103.(LIAO Yihuan, LI Daokui, TANG Guojin. Motion planning of space manipulator system based on a hybrid programming strategy[J]. Journal of Astronautics,2011,32(1): 98-103.(in Chinese))
    [19] 孙勇, 张卯瑞, 梁晓玲. 求解含复杂约束非线性最优控制问题的改进Gauss伪谱法[J]. 自动化学报, 2013,39(5): 672-678.(SUN Yong, ZHANG Maorui, LIANG Xiaoling. Improved Gauss pseudospectral method for solving nonlinear optimal control problem with complex constraints[J]. Acta Automatica Sinca,2013,39(5): 672-678.(in Chinese))
    [20] 董雪仰, 戈新生. 航天器太阳帆板展开过程最优控制的自适应Gauss伪谱法[J]. 应用数学和力学, 2016,37(6): 655-664.(DONG Xueyang, GE Xinsheng. The adaptive Gauss pseudospectral method for the optimal control of spacecraft solar array deployment[J].Applied Mathematics and Mechanics,2016,37(6): 655-664.(in Chinese))
  • 加载中
计量
  • 文章访问数:  1187
  • HTML全文浏览量:  229
  • PDF下载量:  884
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-21
  • 修回日期:  2017-05-23
  • 刊出日期:  2018-01-15

目录

    /

    返回文章
    返回