留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单调迭代结合虚拟区域法求解非线性障碍问题

饶玲

饶玲. 单调迭代结合虚拟区域法求解非线性障碍问题[J]. 应用数学和力学, 2018, 39(4): 485-492. doi: 10.21656/1000-0887.380109
引用本文: 饶玲. 单调迭代结合虚拟区域法求解非线性障碍问题[J]. 应用数学和力学, 2018, 39(4): 485-492. doi: 10.21656/1000-0887.380109
RAO Ling. Monotone Iterations Combined With Fictitious Domain Methods for Numerical Solution of Nonlinear Obstacle Problems[J]. Applied Mathematics and Mechanics, 2018, 39(4): 485-492. doi: 10.21656/1000-0887.380109
Citation: RAO Ling. Monotone Iterations Combined With Fictitious Domain Methods for Numerical Solution of Nonlinear Obstacle Problems[J]. Applied Mathematics and Mechanics, 2018, 39(4): 485-492. doi: 10.21656/1000-0887.380109

单调迭代结合虚拟区域法求解非线性障碍问题

doi: 10.21656/1000-0887.380109
详细信息
    作者简介:

    饶玲(1968—), 女, 副教授, 博士(E-mail: lingrao@sina.com).

  • 中图分类号: O357.41

Monotone Iterations Combined With Fictitious Domain Methods for Numerical Solution of Nonlinear Obstacle Problems

  • 摘要: 讨论了二阶半线性椭圆方程障碍问题的数值求解问题.用单调迭代算法求解障碍问题,并用改进的虚拟区域法求解相关的不规则区域上具有Dirichlet边界条件的椭圆方程.在计算过程中,传统的有限元离散会导致用扩展区域规则网格计算不规则物体边界上积分的困难.为了克服此困难,给出了一种新的基于有限差分的算法,从而使得偏微分快速算法可用.算法结构简单,易于编程实现.对有扩散和增长障碍的logistic人口模型数值模拟说明算法可行且高效.
  • [1] 张石生. 变分不等式及其相关问题[M]. 重庆: 重庆出版社, 2008.(ZHANG Shisheng. Variational Inequalities and the Relevant Problem s[M]. Chongqing: Chongqing Press, 2008.(in Chinese))
    [2] DUVAUT G, LIONS J L. Inequalities in Mechanics and Physics [M]. Berlin, Heidelberg: Springer-Verlag, 1976.
    [3] KINDERLENHRER D, STANPACCHIA G. An Introduction to Variational Inequalities and Their Applications [M]. New York: Academic Press, 1980.
    [4] GLOWINSKI R. Numerical Methods for Nonlinear Variational Problems [M]. New York: Springer Verlag, 1984.
    [5] CHAN Hsinfang, FAN Chiaming, KUO Chiasen. Generalized finite difference method for solving two-dimensional non-linear obstacle problems[J]. Engineering Analysis With Boundary Elements,2013,37(9): 1189-1196.
    [6] GLOWINSKI R, KUZNETSOV Y A, PAN T W. A penalty/Newton/conjugate gradient method for the solution of obstacle problems[J]. Comptes Rendus Mathematique,2003,336(5): 435-440.
    [7] 郑铁生, 李立, 许庆余. 一类椭圆型变分不等式离散问题的迭代算法[J]. 应用数学和力学, 1995,16(4): 329-335.(ZHENG Tiesheng, LI Li, XU Qingyu. An iterative method for the discrete problems of a class of elliptical variational inequalities[J]. Applied Mathematics and Mechanics,1995,16(4): 329-335.(in Chinese))
    [8] 刘丹阳, 蒋娅. 混合向量变分不等式标量化及间隙函数误差界[J]. 应用数学和力学, 2017,38(6): 715-726.(LIU Danyang, JIANG Ya. Scalarization of mixed vector variational inequalities and error bounds of gap functions[J]. Applied Mathematics and Mechanics,2017, 3〖STHZ〗8(6): 715-726.(in Chinese))
    [9] 郑宏, 刘德富, 李焯芬, 等. 一个新的有自由面渗流问题的变分不等式提法[J]. 应用数学和力学, 2005,26(3): 363-371.(ZHENG Hong, LIU Defu, LEE C F, et al. New variational inequality formulation for seepage problems with free surfaces[J]. Applied Mathematics and Mechanics,2005,26(3): 363-371.(in Chinese))
    [10] KORMAN P, LEUNG A W, STOJANOVIC S. Monotone iterations for nonlinear obstacle problem[J]. Journal of the Australian Mathematical Society,1990,31(3): 259-276.
    [11] PAO C V. Accelerated monotone iterations for numerical solutions of nonlinear elliptic boundary value problems[J]. Computers & Mathematics With Applications,2003,46(10/11): 1535-1544.
    [12] HE J W. Fictitious domain methods in fluid mechanics applications to unsteady potential flows over moving bodies[D]. PhD Thesis. Paris: University Paris 6,1994.
    [13] GLOWINSKI R, PAN T W, PERIAUX J. A one shot domain decomposition/fictitious domain method for the solution of elliptic equations[M]// Parallel Computational Fluid Dynamics: New Trends and Advances . Elsevier Science, 1993.
    [14] GILBARG D, TRUDINGER N S. Elliptic Partial Differential Equations of Second Order [M]. New York: Springer Verlag, 1977.
    [15] GLOWINSKI R, LIONS J L, TRMOLIRES R. Numerical Analysis of Variational Inequalities [M]. New York: North-Holland Publishing Company, 1976.
    [16] CHEN Hongquan, RAO Ling. The technique of the immersed boundary method: applications to the numerical solutions of imcompressible flows and wave scattering [J]. Modern Physics Letters B,2009,23(3): 437-440.
    [17] ENRIQUEZ-REMIGIO S A, ROMA A M. Incompressible flows in elastic domains: an immersed boundary method approach[J]. Applied Mathematical Modeling,2005,29(1): 35-54.
  • 加载中
计量
  • 文章访问数:  1274
  • HTML全文浏览量:  166
  • PDF下载量:  543
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-24
  • 修回日期:  2017-08-09
  • 刊出日期:  2018-04-15

目录

    /

    返回文章
    返回