留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有时空时滞的非局部扩散SIR模型的行波解

邹霞

邹霞. 具有时空时滞的非局部扩散SIR模型的行波解[J]. 应用数学和力学, 2018, 39(5): 611-630. doi: 10.21656/1000-0887.380118
引用本文: 邹霞. 具有时空时滞的非局部扩散SIR模型的行波解[J]. 应用数学和力学, 2018, 39(5): 611-630. doi: 10.21656/1000-0887.380118
ZOU Xia. Traveling Wave Solutions for Nonlocal Dispersal SIR Models With Spatio-Temporal Delays[J]. Applied Mathematics and Mechanics, 2018, 39(5): 611-630. doi: 10.21656/1000-0887.380118
Citation: ZOU Xia. Traveling Wave Solutions for Nonlocal Dispersal SIR Models With Spatio-Temporal Delays[J]. Applied Mathematics and Mechanics, 2018, 39(5): 611-630. doi: 10.21656/1000-0887.380118

具有时空时滞的非局部扩散SIR模型的行波解

doi: 10.21656/1000-0887.380118
基金项目: 国家自然科学基金(11671315)
详细信息
    作者简介:

    邹霞(1989—),女,硕士(Email: 17792543182@163.com).

  • 中图分类号: O175.14

Traveling Wave Solutions for Nonlocal Dispersal SIR Models With Spatio-Temporal Delays

Funds: The National Natural Science Foundation of China(11671315)
  • 摘要: 针对种群中的染病个体在疾病潜伏期内具有自由移动和传染疾病的现象, 研究了一个具有时空时滞的非局部扩散SIR模型的行波解问题.利用基本再生数和最小波速判定行波解是否存在.首先, 通过在有界区域上构造一个初始函数的不变锥, 利用Schauder不动点定理证明在该锥上存在不动点, 然后通过取极限的方法得到行波解的存在性.其次, 利用双边Laplace(拉普拉斯)变换法证明了行波解的不存在性.由于行波解的最小传播速度对控制疾病传播具有重要的指导意义, 最后讨论了非局部扩散、时滞等因素对最小波速的影响.
  • [1] KERMACK W O, MCKENDRICK A G. A contribution to the mathematical theory of epidemics[J]. Proceedings of the Royal Society of London(Series A),1927,115(772): 700-721.
    [2] KERMACK W O, MCKENDRICK A G. Contributions to the mathematical theory of epidemics II: the problem of endemicity[J]. Proceedings of the Royal Society of London(Series A),1932,138(834): 55-83.
    [3] LI Jing, ZOU Xingfu. Modeling spatial spread of infectious disesses with a fixed latent period in a spatially continuous domain[J]. Bulletin of Mathematical Biology,2009,71(18): 2048-2079.
    [4] HOSONO Y, LLYAS B. Traveling waves for a simple diffusive epidemic model[J]. Mathematical Models & Methods in Applied Sciences,1995,5(7): 935-966.
    [5] WU Chufen, WENG Peixuan. Asymptotic speed of propagation and traveling wavefronts for a SIR epidemic model[J]. Discrete and Continuous Dynamical Systems(Series B),2011,15(3): 867-892.
    [6] KOROBEINIKOV A. Global properties of infectious disease models with nonlinear incidence[J]. Bulletin of Mathematical Biology,2007,69(6): 1871-1886.
    [7] WANG Xiangsheng, WANG Haiyan, WU Jianhong. Traveling waves of diffusive predator-prey systems: disease outbreak propagation[J]. Discrete and Continuous Dynamical Systems(Series A),2012,32(9): 3303-3324.
    [8] MURRARY J D. Mathematical Biology II: Spatial Models and Biomedical Applications [M]. Berlin: Springer, 2003: 18.
    [9] YANG Feiying, LI Wantong, WANG Zhicheng. Traveling waves in a nonlocal dispersal SIR epidemic model[J]. Nonlinear Analysis: Real World Applications,2015,23(7): 129-147.
    [10] KENDALL D G. Mathematical models of the spread of infection[J]. Mathematics & Computer Science in Biology & Medicine,1965: 213-225.
    [11] DIEKMANN O. Thresholds and travelling waves for the geographical spread of infection[J]. Journal of Mathematical Biology,1978,6(2): 109-130.
    [12] THIEME H R. A model for the spatial spread of an epidemic[J]. Journal of Mathematical Biology,1977,4(4): 337-351.
    [13] THIEME H R. The asymptotic behaviour of solutions of nonlinear integral equations[J]. Mathematische Zeitschrift,1977,157(2): 141-154.
    [14] HUANG G, TAKEUCHI Y. Global analysis on delay epidemiological dynamic models with nonlinear incidence[J]. Journal of Mathematical Biology,2011,63(1): 125-139.
    [15] BERETTA E, TAKEUCHI Y. Global stability of an SIR epidemic model with time delays[J]. Journal of Mathematical Biology,1995,33(3): 250-260.
    [16] BAI Zhenguo, ZHANG Shengli. Traveling waves of a diffusive SIR epidemic model with a class of nonlinear incidence rates and distributed delay[J]. Communications in Nonlinear Science and Numerical Simulation,2015,22(1/3): 1370-1381.
    [17] BRITTON N F. Spatial structures and periodic traveling waves in an intergo-differential reaction-diffusion population model[M]. SIAM Journal on Applied Mathematics,1990,50(6): 1663-1688.
    [18] GOURLEY S A, SO J W H, WU Jianhong. Nonlocality of reaction-diffusion equations induced by delay: biological modeling and nonlinear dynamics[J]. Journal of Mathematical Sciences,2004,124(4): 5119-5153.
    [19] YANG Feiying, LI Yan, LI Wantong, et al. Traveling waves in a nonlocal dispersal Kermack-Mckendrick epidemic model[J]. Discrete and Continuous Dynamical Systems(Series B),2013,18(7): 1969-1993.
    [20] ZHAO Haiqin, WU Shiliang, LIU Sanyang. Pulsating traveling fronts and entire solutions in a discrete periodic system with a quiescent stage[J]. Communications in Nonlinear Science and Numerical Simulation,2013,18(8): 2164-2176.
  • 加载中
计量
  • 文章访问数:  1145
  • HTML全文浏览量:  154
  • PDF下载量:  465
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-02
  • 修回日期:  2018-04-01
  • 刊出日期:  2018-05-15

目录

    /

    返回文章
    返回