留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

方柱/板结合部马蹄涡流动结构的动力学模态分解

王建明 明晓杰 王涵 马阳 王成军

王建明, 明晓杰, 王涵, 马阳, 王成军. 方柱/板结合部马蹄涡流动结构的动力学模态分解[J]. 应用数学和力学, 2018, 39(1): 64-76. doi: 10.21656/1000-0887.380125
引用本文: 王建明, 明晓杰, 王涵, 马阳, 王成军. 方柱/板结合部马蹄涡流动结构的动力学模态分解[J]. 应用数学和力学, 2018, 39(1): 64-76. doi: 10.21656/1000-0887.380125
WANG Jianming, MING Xiaojie, WANG Han, MA Yang, WANG Chengjun. Dynamic Mode Decomposition of Horseshoe Vortex Flow Structures Around Square PrismPlate Junctions[J]. Applied Mathematics and Mechanics, 2018, 39(1): 64-76. doi: 10.21656/1000-0887.380125
Citation: WANG Jianming, MING Xiaojie, WANG Han, MA Yang, WANG Chengjun. Dynamic Mode Decomposition of Horseshoe Vortex Flow Structures Around Square PrismPlate Junctions[J]. Applied Mathematics and Mechanics, 2018, 39(1): 64-76. doi: 10.21656/1000-0887.380125

方柱/板结合部马蹄涡流动结构的动力学模态分解

doi: 10.21656/1000-0887.380125
基金项目: 国家自然科学基金(51476106);辽宁省一流特色学科(15021540)
详细信息
    作者简介:

    王建明(1975—),男,副教授,博士(通讯作者. E-mail: jmwang75@163.com).

  • 中图分类号: O246

Dynamic Mode Decomposition of Horseshoe Vortex Flow Structures Around Square PrismPlate Junctions

Funds: The National Natural Science Foundation of China(51476106)
  • 摘要: 方柱/板结合部区域的马蹄涡系统存在多频流动现象.为了研究各频率所对应的振荡规律及其潜在的动力学信息,对方柱/板结合部处于周期振荡流动状态的马蹄涡系流动结构进行数值模拟,发现处于周期振荡流动状态的马蹄涡系为倍频流动现象.运用动力学模态分解(DMD)技术对方柱体上游对称面上的速度场进行模态分解,将所得到的第1、2、3阶模态分别叠加到平均流模态进行模态重构并在时域上进行推进演化分析.结果表明:周期振荡马蹄涡系以不同尺度马蹄涡间的相互卷并为主,发现了马蹄涡间不同的卷并方式.
  • [1] DEVENPORT W J, SIMPSON R L. Time-dependent and time-averaged turbulence structure near the nose of a wing-body junction[J]. Journal of Fluid Mechanics,1990,210: 23-55.
    [2] ROUVREAU S, DAVID L, CALLUAUD D, et al. Laminar junction flow at low Reynolds number: influence of the upstream region on the comparison between experiments and calculations[J]. Comptes Rendus Mccanique,2005,333(3): 265-272.
    [3] 张华,胡波,MUHAMMAD Y Y, 等. 角区三维分离流附着鞍点拓扑结构及其演化[J]. 北京航空航天大学学报, 2012,38(7): 857-861.(ZHANG Hua, HU Bo, MUHAMMAD Y Y, et al. Attachment saddle point topology and transformation of 3-D separation in juncture flow[J]. Journal of Beijing University of Aeronautics and Astronautics,2012,38(7): 857-861.(in Chinese))
    [4] LIN C, CHIU P H, SHIEH S J. Characteristics of horseshoe vortex system near a vertical plate-base plate juncture[J]. Experimental Thermal & Fluid Science,2002,27(1): 25-46.
    [5] LIN C, LAI W J, CHANG K A. Simultaneous particle image velocimetry and laser doppler velocimetry measurements of periodical oscillatory horseshoe vortex system near square cylinder-base plate juncture[J]. Journal of Engineering Mechanics,2003,129(10): 1173-1188.
    [6] 张华, 吕志咏, 孙盛东. 应用PIV对角区非定常马蹄涡结构的实验研究[J]. 力学学报, 2008,40(2): 171-178.(ZHANG Hua, Lü Zhiyong, SUN Shengdong. The experimental study on unstesdy horseshoe vortex structure in junction flow with PIV[J]. Chinese Journal of Theoretical and Applied Mechanics,2008,40(2): 171-178.(in Chinese))
    [7] 张楠, 张胜利, 沈泓萃, 等. 翼/板结合部涡旋流动结构与壁面脉动压力的大涡模拟研究[J]. 船舶力学, 2013,17(7): 729-740.(ZHANG Nan, ZHANG Shengli, SHEN Hongcui, et al. Large eddy simulation of vortical flow structure and wall pressure fluctuations around wing-plate junction[J]. Journal of Ship Mechanics,2013,17(7): 729-740.(in Chinese))
    [8] SIMPSON R L. Junctionflows[J]. Fluid Mechanics,2001,33(1): 415-443.
    [9] WANG J M, BI W T, WEI Q D. Effects of an upstream inclined rod on the circular cylinder-flat plate junction flow[J]. Experiments in Fluids,2009,46(6): 1093-1104.
    [10] SCHMID P, SESTERHENN J. Dynamic mode decomposition of numerical and experimental data[J]. Journal of Fluid Mechanics,2010,656(10): 5-28.
    [11] 唐湛棋. 强扰动作用于边界层的PIV实验研究[D]. 博士学位论文. 天津: 天津大学, 2013.(TANG Zhanqi. Particle image velocimetry investigation of strong disturbance effect on boundary layer[D]. PhD Thesis. Tianjin: Tianjin University, 2013.(in Chinese))
    [12] GUNARATNE G H, TALLEY D G, GORD J R, et al. Dynamic-mode decomposition based analysis of shear coaxial jets with and without transverse acoustic driving[J]. Journal of Fluid Mechanics,2016,790: 5-32.
    [13] SAYADI T, SCHMID P J, RICHECOEUR F, et al. Parametrized data-driven decomposition for bifurcation analysis with application to thermo-acoustically unstable systems[J]. Physics of Fluids,2015,27(3): 037102. DOI: 10.1063/1.4913868.
    [14] PAN Chong, YU Dongsheng, WANG Jinjun. Dynamical mode decomposition of Gurney flap wake flow[J]. Theoretical and Applied Mechanics Letters,2011,1(1): 012002.
    [15] LEE J, PARK H B, SUNG H J. Dynamic mode decomposition of turbulent cavity flows for self-sustained oscillation[J]. International Journal of Heat & Fluid Flow,2010,36(2): 1098-1110.
    [16] ZHANG Chao, WAN Zhenhua, SUN Dejun. Mode transition and oscillation suppression in supersonic cavity flow[J].Applied Mathematics and Mechanics(English Edition),2016,37(7): 941-956.
    [17] PEARSON D S, GANAPATHISUBRAMANI B, GOULART P J. Optimal mode decomposition for unsteady flows[J]. Journal of Fluid Mechanics,2013,733(2): 473-503.
    [18] MIHAILO R J, SCHMID P J, NICHOLS J W. Sparsity-promoting dynamic mode decomposition[J]. Physics of Fluids,2013,26(2): 561-571.
    [19] HEMATI M S, ROWLEY C W, DEEM E A, et al. De-biasing the dynamic mode decomposition for applied Koopman spectral analysis[J]. Journal of Nonlinear Science,2015,25(6): 1-40.
    [20] HUNT J C R, WRAY A A, MOIN P. Eddies stream and convergence zones in turbulent flows[C]//Proceedings of the 1988 Summer Program . CA, United States, 1988: 193-209.
    [21] BAKER C J. The laminar horseshoe vortex[J]. Journal of Fluid Mechanics,1979,95(2): 347-367.
    [22] HEMATI M S, WILLIAMS M O, ROWLEY C W. Dynamic mode decomposition for large and streaming datasets[J]. Physics of Fluids,2014,26(11): 5-28.
    [23] ROWLEY C, MEZIC I, BAGHERI S, et al. Spectral analysis of nonlinear flows[J]. Journal of Fluid Mechanics,2009,641: 115-127.
  • 加载中
计量
  • 文章访问数:  1031
  • HTML全文浏览量:  140
  • PDF下载量:  847
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-08
  • 修回日期:  2017-05-15
  • 刊出日期:  2018-01-15

目录

    /

    返回文章
    返回