留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一维格上时滞微分系统的行波解

曹华荣 吴事良

曹华荣, 吴事良. 一维格上时滞微分系统的行波解[J]. 应用数学和力学, 2018, 39(5): 592-610. doi: 10.21656/1000-0887.380165
引用本文: 曹华荣, 吴事良. 一维格上时滞微分系统的行波解[J]. 应用数学和力学, 2018, 39(5): 592-610. doi: 10.21656/1000-0887.380165
CAO Huarong, WU Shiliang. Traveling Waves of a Delayed Differential System in a Lattice[J]. Applied Mathematics and Mechanics, 2018, 39(5): 592-610. doi: 10.21656/1000-0887.380165
Citation: CAO Huarong, WU Shiliang. Traveling Waves of a Delayed Differential System in a Lattice[J]. Applied Mathematics and Mechanics, 2018, 39(5): 592-610. doi: 10.21656/1000-0887.380165

一维格上时滞微分系统的行波解

doi: 10.21656/1000-0887.380165
基金项目: 中央高校基本科研业务费(JB160714)
详细信息
    作者简介:

    曹华荣(1993—), 女,硕士生(E-mail: chr0219@163.com);吴事良(1981—),男,博士,教授(通讯作者. E-mail: slwu@xidian.edu.cn).

  • 中图分类号: O175.14

Traveling Waves of a Delayed Differential System in a Lattice

  • 摘要: 针对部分种群个体活动而其他个体静止的单种群模型, 主要研究了一维格上具有静止阶段的时滞反应扩散系统的行波解的定性性质.在单稳和拟单调的假设条件下, 首先,研究了行波解的存在性.其次, 证明了行波解的渐近行为、 单调性以及唯一性.最后, 证明了所有非临界波前解(即波速大于最小波速的波前解)是指数渐近稳定的.
  • [1] CHEN Xinfu, GUO Jongshenq. Existence and asymptotic stability of traveling waves of discrete quasilinear monostable equations[J]. Journal of Differential Equations,2002,184(2): 549-569.
    [2] HADELER K P, LEWIS M A. Spatial dynamics of the diffusive logistic equation with a sedentary compartment[J]. Canadian Applied Mathematics Quarterly,2002,10(4): 473-499.
    [3] HSU Szebi, ZHAO Xiaoqiang. Spreading speeds and traveling waves for nonmonotone integrodifference equations[J]. SIAM Journal on Mathematical Analysis,2008,40(2): 776-789.
    [4] LEWIS M A, SCHMITZ G. Biological invasion of an organism with separate mobile and stationary states: modeling and analysis[J]. Forma,1996,11(1): 1-25.
    [5] LI Wanyong, LIN Guo, RUAN Shigui. Existence of travelling wave solutions in delayed reaction diffusion systems with applications to diffusion competition systems[J]. Nonlinearity,2006,19(6): 1253-1273.
    [6] MA Shiwang. Traveling wavefronts for delayed reaction-diffusion systems via a fixed point theorem[J]. Journal of Differential Equations,2001,171(2): 294-314.
    [7] MEI Ming, OU Chunhua, ZHAO Xiaoqiang. Global stability of monostable traveling waves for nonlocal time-delayed reaction-diffusion equations[J]. SIAM Journal on Mathematical Analysis,2010,42(6): 2762-2790.
    [8] WU Shiliang, LIU Sanyang. Uniqueness of non-monotone traveling waves for delayed reaction-diffusion equations[J]. Applied Mathematics Letters,2009,22(7): 1056-1061.
    [9] WU Shiliang, CHEN Guangsheng. Uniqueness and exponential stability of traveling wave fronts for a multi-type SIS nonlocal epidemic model[J]. Nonlinear Analysis: Real World Applications,2017,36: 267-277.
    [10] WU Shiliang, HSU Chenghsiung, XIAO Yanyu. Global attractivity, spreading speeds and traveling waves of delayed nonlocal reaction-diffusion systems[J]. Journal of Differential Equations,2015,258(4): 1058-1105.
    [11] WANG Zhicheng, LI Wantong, RUAN Shigui. Travelling fronts in monostable equations with nonlocal delayed effects[J]. Journal of Dynamics and Differential Equations,2008,20(3): 573-607.
    [12] WU Jianhong, ZOU Xingfu. Traveling wave fronts of reaction-diffusion systems with delay[J]. Journal of Dynamics and Differential Equations,2001,13(3): 651-687.
    [13] ZHAO Xiaoqiang, WANG Wendi. Fisher waves in an epidemic model[J]. Discrete and Continuous Dynamical Systems(Series B),2004,4(4): 1117-1128.
    [14] ZHAO Haiqin, WU Shiliang. Wave propagation for a reaction-diffusion model with a quiescent stage on a 2D spatial lattice[J]. Nonlinear Analysis: Real World Applications,2011,12(2): 1178-1191.
    [15] ZHAO Haiqin, WU Shiliang, LIU Sanyang. Pulsating traveling fronts and entire solutions in a discrete periodic system with a quiescent stage[J]. Communications in Nonlinear Science and Numerical Simulation,2013,18(8): 2164-2176.
    [16] HADELER K P, HILLEN T, LEWIS M A. Biological modeling with quiescent phases[M]// COSNER C, CANTRELL S, RUAN S, ed.Spatial Ecology.Taylor and Francis. 2009.
    [17] WU Shiliang, ZHAO Haiqin. Traveling fronts for a delayed reaction-diffusion system with a quiescent stage[J]. Communications in Nonlinear Science and Numerical Simulation,2011,16(9): 3610-3621.
    [18] CHEN Xinfu, GUO Jongshenq. Uniqueness and existence of traveling waves for discrete quasilinear monostable dynamics[J]. Mathematische Annalen,2003,326(1): 123-146.
    [19] GUO Jongshenq, WU Changhong. Wave propagation for a two-component lattice dynamical system arising in strong competition models[J]. Journal of Differential Equations,2011,250(8): 3504-3533.
    [20] GUO Jongshenq, WU Changhong. Existence and uniqueness of traveling waves for a monostable 2-D lattice dynamical system[J]. Osaka Journal of Mathematics,2008,45(2): 327-346.
    [21] GUO Jongshenq, WU Chinchin. Uniqueness and stability of traveling waves for periodic monostable lattice dynamical system[J]. Journal of Differential Equations,2009,246(10): 3818-3833.
    [22] CARR J, CHMAJ A. Uniqueness of travelling waves for nonlocal monostable equations[J]. Proceedings of the American Mathematical Society,2004,132(8): 2433-2439.
    [23] WIDDER D V. The Laplace Transform [M]. Princeton: Princeton University Press, 1941.
    [24] SMITH H L.Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems [M].Mathematical Surveys and Monographs . Vol41. Providence, RI: American Mathematical Society, 1995.
    [25] LIANG Xing, ZHAO Xiaoqiang. Asymptotic speeds of spread and traveling waves for monotone semiflows with applications[J]. Communications on Pure and Applied Mathematics,2007,60(1): 1-40.
  • 加载中
计量
  • 文章访问数:  1354
  • HTML全文浏览量:  218
  • PDF下载量:  490
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-12
  • 修回日期:  2017-09-06
  • 刊出日期:  2018-05-15

目录

    /

    返回文章
    返回