留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

带源项浅水波方程的高分辨率熵稳定格式

张海军 封建湖 程晓晗 李雪

张海军, 封建湖, 程晓晗, 李雪. 带源项浅水波方程的高分辨率熵稳定格式[J]. 应用数学和力学, 2018, 39(8): 935-945. doi: 10.21656/1000-0887.380195
引用本文: 张海军, 封建湖, 程晓晗, 李雪. 带源项浅水波方程的高分辨率熵稳定格式[J]. 应用数学和力学, 2018, 39(8): 935-945. doi: 10.21656/1000-0887.380195
ZHANG Haijun, FENG Jianhu, CHENG Xiaohan, LI Xue. An Entropy Stable Scheme for Shallow Water Equations With Source Terms[J]. Applied Mathematics and Mechanics, 2018, 39(8): 935-945. doi: 10.21656/1000-0887.380195
Citation: ZHANG Haijun, FENG Jianhu, CHENG Xiaohan, LI Xue. An Entropy Stable Scheme for Shallow Water Equations With Source Terms[J]. Applied Mathematics and Mechanics, 2018, 39(8): 935-945. doi: 10.21656/1000-0887.380195

带源项浅水波方程的高分辨率熵稳定格式

doi: 10.21656/1000-0887.380195
基金项目: 国家自然科学基金(11601037;11401045;11171043);中央高校基本科研业务费(310812171002)
详细信息
    作者简介:

    张海军(1992—),男,硕士生(E-mail: 2397381704@qq.com);封建湖(1960—),男,教授,博士,博士生导师(通讯作者. E-mail: jhfeng@chd.edu.cn).

  • 中图分类号: O354;O241.82

An Entropy Stable Scheme for Shallow Water Equations With Source Terms

Funds: The National Natural Science Foundation of China(11601037;11401045;11171043)
  • 摘要: 提出了一种求解带源项浅水波方程的熵稳定格式.新格式利用通量限制函数将一阶熵稳定格式和高阶熵守恒格式结合,具有熵守恒格式和熵稳定格式的优点:在解的光滑区域具有高精度,在解的间断区域避免了非物理现象的产生,同时可以准确地捕捉激波,从而达到高分辨率的效果.利用新格式计算了一维和二维的经典算例,数值结果表明,新格式是模拟带源项浅水波方程的理想方法.
  • [1] FJORDHOLM U S, MISHRA S, TADMOR E. Well-balanced and energy stable schemes for the shallow water equations with discontinuous topography[J]. Journal of Computational Physics,2011,230(14): 5587-5609.
    [2] LAX P D. Weak solutions of nonlinear hyperbolic equations and their numerical computation[J]. Communications on Pure and Applied Mathematics,1954,7(1): 159-193.
    [3] LAX P D. Hyperbolic systems of conservation laws and the mathematical theory of shock waves[C]// SIAM Regional Conference Lectures in Applied Mathematics. Vol11. Philadelphia, USA, 1973.
    [4] TADMOR E. The numerical viscosity of entropy stable schemes for systems of conservation laws. I[J]. Mathematics of Computation,1987,49(179): 91-103.
    [5] ROE P L. Entropy conservation schemes forthe Euler equations[R]. Talk at HYP 2006, Lyon, France, 2006.
    [6] ISMAIL F, ROE P L. Affordable, entropy-consistent Euler flux functions Ⅱ: entropy production at shocks[J].Journal of Computational Physics,2009,228(15): 5410-5436.
    [7] MOHAMMED A N, ISMAIL F. Study of an entropy-consistent Navier-Stokes flux[J]. International Journal of Computational Fluid Dynamics,2013,27(1): 1-14.
    [8] LIU Y, FENG J, REN J. High resolution, entropy-consistent scheme using flux limiter for hyperbolic systems of conservation laws[J]. Journal of Scientific Computing,2015,64(3): 914-937.
    [9] 任炯, 封建湖, 刘友琼, 等. 求解双曲守恒律方程的高分辨率熵相容格式[J]. 计算物理, 2014,31(5): 539-551.(REN Jiong, FENG Jianhu, LIU Youqiong, et al. High resolution entropy consistent schemes for hyperbolic conservation laws[J]. Chinese Journal of Computational Physics,2014,31(5): 539-551.(in Chinese))
    [10] 刘友琼, 封建湖, 梁楠, 等. 求解浅水波方程的熵相容格式[J]. 应用数学和力学, 2013,34(12): 1247-1257.(LIU Youqiong, FENG Jianhu, LIANG Nan, et al. An entropy-consistent flux scheme for shallow water equations[J]. Applied Mathematics and Mechanics,2013,34(12): 1247-1257.(in Chinese))
    [11] 刘友琼, 封建湖, 任炯, 等. 求解多维Euler方程的二阶旋转混合型格式[J]. 应用数学和力学, 2014,35(5): 542-553.(LIU Youqiong, FENG Jianhu, REN Jiong, et al. A second-order rotated-hybrid scheme for solving multi-dimensional compressible Euler equations[J]. Applied Mathematics and Mechanics,2014,35(5): 542-553.(in Chinese))
    [12] 程晓晗, 聂玉峰, 蔡力. 基于WENO重构的熵稳定格式求解浅水方程[J]. 计算物理, 2015,32(5): 523-528.(CHENG Xiaohan, NIE Yufeng, CAI Li. WENO based entropy stable scheme for shallow water equations[J]. Chinese Journal of Computational Physics,2015,32(5): 523-528.(in Chinese))
    [13] 程晓晗, 封建湖, 聂玉峰. 求解双曲守恒律方程的WENO型熵相容格式[J]. 爆炸与冲击, 2014,34(4): 501-507.(CHENG Xiaohan, FENG Jianhu, NIE Yufeng. WENO type entropy consistent scheme for hyperbolic conservation laws[J]. Explosion and Shock Waves,2014,34(4): 501-507.(in Chinese))
    [14] 郑素佩, 封建湖, 刘彩侠. 高分辨率熵相容算法在二维溃坝问题中的应用[J]. 水动力学研究与进展, 2013,28(5): 545-551.(ZHENG Supei, FENG Jianhu, LIU Caixia. High-resolution entropy consistent algorithm for the two-dimensional dam-break flows[J]. Chinese Journal of Hydrodynamics,2013,28(5): 545-551.(in Chinese))
    [15] GOTTLIEB S, SHU C W. A survey of strong stability preserving high order time discretizations[J]. SIAM Review,2001,43(1): 89-112.
    [16] FJORHOLM U S. Structure preserving finite volume methods for the shallow water equations[D]. Master Thesis. Norway: University of Oslo, 2009.
  • 加载中
计量
  • 文章访问数:  1446
  • HTML全文浏览量:  259
  • PDF下载量:  716
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-13
  • 修回日期:  2017-12-07
  • 刊出日期:  2018-08-15

目录

    /

    返回文章
    返回