留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

识别含热源瞬态热传导问题的热扩散系数

周焕林 严俊 余波 陈豪龙

周焕林, 严俊, 余波, 陈豪龙. 识别含热源瞬态热传导问题的热扩散系数[J]. 应用数学和力学, 2018, 39(2): 160-169. doi: 10.21656/1000-0887.380199
引用本文: 周焕林, 严俊, 余波, 陈豪龙. 识别含热源瞬态热传导问题的热扩散系数[J]. 应用数学和力学, 2018, 39(2): 160-169. doi: 10.21656/1000-0887.380199
ZHOU Huanlin, YAN Jun, YU Bo, CHEN Haolong. Identification of Thermal Diffusion Coefficients for Transient Heat Conduction Problems With Heat Sources[J]. Applied Mathematics and Mechanics, 2018, 39(2): 160-169. doi: 10.21656/1000-0887.380199
Citation: ZHOU Huanlin, YAN Jun, YU Bo, CHEN Haolong. Identification of Thermal Diffusion Coefficients for Transient Heat Conduction Problems With Heat Sources[J]. Applied Mathematics and Mechanics, 2018, 39(2): 160-169. doi: 10.21656/1000-0887.380199

识别含热源瞬态热传导问题的热扩散系数

doi: 10.21656/1000-0887.380199
基金项目: 国家自然科学基金(11672098;11502063)
详细信息
    作者简介:

    周焕林(1973—),男,教授,博士生导师(通讯作者. E-mail: zhouhl@hfut.edu.cn).

  • 中图分类号: TK124

Identification of Thermal Diffusion Coefficients for Transient Heat Conduction Problems With Heat Sources

Funds: The National Natural Science Foundation of China(11672098;11502063)
  • 摘要: 针对含有热源的瞬态热传导反问题,引入一个变换将含热源热传导问题转换为无热源热传导问题,采用改进布谷鸟算法反演热扩散系数.正问题由边界元法求解.将热扩散系数作为优化变量,以计算温度和测量温度之间的接近程度为目标函数,通过改进布谷鸟算法极小化目标函数来优化估计热扩散系数.比较共轭梯度法、布谷鸟算法和改进布谷鸟算法的反演结果.与共轭梯度法相比,改进布谷鸟算法对迭代初值不敏感;与布谷鸟算法相比,改进布谷鸟算法收敛速度更快.算例讨论了测点数量、鸟巢数量、测量误差对计算结果的影响.增加测点数量,反演结果精度降低;增加鸟巢数量,迭代次数减少;随着测量误差的增大,结果精度降低.数值算例验证了改进布谷鸟算法反演热扩散系数的准确性和有效性.
  • [1] YU Yue, XU Dinghua. On the inverse problem of thermal conductivity determination in nonlinear heat and moisture transfer model within textiles[J]. Applied Mathematics and Computation,2015,264(C): 284-299.
    [2] GREIBY I, MISHRA D K, DOLAN K D. Inverse method to sequentially estimate temperature-dependent thermal conductivity of cherry pomace during nonisothermal heating[J]. Journal of Food Engineering,2014,127(4): 16-23.
    [3] 肖建庄, 李志卫. 高温下高强混凝土导热系数反演及其变异性[J]. 建筑科学与工程学报, 2014,31(1): 44-49.(XIAO Jianzhuang, LI Zhiwei. Back-analysis and variability of thermal conductivity of high-strength concrete under high temperatures[J]. Journal of Architecture and Civil Engineering,2014,31(1): 44-49.(in Chinese))
    [4] 王彦龙, 屈福政. 基于ANSYS和MATLAB智能算法的电石热物性参数反演[J]. 冶金设备, 2014,4(2): 23-28.(WANG Yanlong, QU Fuzheng. Thermal parameter inversion calcium carbide based on ANSYS and MATLAB intelligent algorithm[J]. Metallurgical Equipment,2014,4(2): 23-28.(in Chinese))
    [5] SAAD A, ECHCHELH A, HATTABI M, et al. The identification of effective thermal conductivity for fibrous reinforcement composite by inverse method[J]. Journal of Reinforced Plastics and Composites,2014,33(23): 2183-2191.
    [6] RAMSAROOP R, PERSAD P. Determination of the heat transfer coefficient and thermal conductivity for coconut kernels using an inverse method with a developed hemispherical shell model[J]. Journal of Food Engineering,2012,110(1): 141-157.
    [7] RODRGUEZ F L, NICOLAU V D P. Inverse heat transfer approach for IR image reconstruction: application to thermal non-destructive evaluation[J]. Applied Thermal Engineering,2012,33/34: 109-118.
    [8] MIERZWICZAK M, KOODZIEJ J A. The determination temperature-dependent thermal conductivity as inverse steady heat conduction problem[J]. International Journal of Heat and Mass Transfer,2011,54(4): 790-796.
    [9] CHEN W L, CHOU H M, YANG Y C. An inverse problem in estimating the space-dependent thermal conductivity of a functionally graded hollow cylinder[J]. Composites Part B: Engineering,2013,50(7): 112-119.
    [10] CANNON J R, DUCHATEAU P. An inverse problem for a nonlinear diffusion equation[J]. SIAM Journal on Applied Mathematics,1980,39(2): 272-289.
    [11] 唐中华, 钱国红, 钱炜祺. 材料热传导系数随温度变化函数的反演方法[J]. 计算力学学报, 2011,28(3): 377-382.(TANG Zhonghua, QIAN Guohong, QIAN Weiqi. Estimation of temperature-dependent function of thermal conductivity for a material[J]. Chinese Journal of Computational Mechanics,2011,28(3): 377-382.(in Chinese))
    [12] 周焕林, 徐兴盛, 李秀丽, 等. 反演二维瞬态热传导问题随温度变化的导热系数[J]. 应用数学和力学, 2014,35(12): 1341-1351.(ZHOU Huanlin, XU Xingsheng, LI Xiuli, et al. Identification of temperature-dependent thermal conductivity for 2-D transient heat conduction problems[J]. Applied Mathematics and Mechanics,2014,35(12): 1341-1351.(in Chinese))
    [13] ZHOU J, YU A, ZHANG Y. A boundary element method for evaluation of the effective thermal conductivity of packed beds[J]. Journal of Heat Transfer,2007,129(3): 363-371.
    [14] HEMATIYAN M R, KHOSRAVIFARD A, SHIAH Y C. A novel inverse method for identification of 3D thermal conductivity coefficients of anisotropic media by the boundary element analysis[J]. International Journal of Heat and Mass Transfer,2015,89(11): 685-693.
    [15] DASHTI ARDAKANI M, KHODADAD M. Identification of thermal conductivity and the shape of an inclusion using the boundary elements method and the particle swarm optimization algorithm[J]. Inverse Problems in Science and Engineering,2009,17(7): 855-870.
    [16] MERA N S, ELLIOTT L, INGHAM D B, et al. Use of the boundary element method to determine the thermal conductivity tensor of an anisotropic medium[J]. International Journal of Heat and Mass Transfer,2001,44(21): 4157-4167.
    [17] YANG X S, DEB S. Cuckoo Search via Lévy Flights [M]. New York: IEEE Publications, 2009.
  • 加载中
计量
  • 文章访问数:  1449
  • HTML全文浏览量:  228
  • PDF下载量:  953
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-19
  • 修回日期:  2017-12-18
  • 刊出日期:  2018-02-15

目录

    /

    返回文章
    返回