[1] |
YU Yue, XU Dinghua. On the inverse problem of thermal conductivity determination in nonlinear heat and moisture transfer model within textiles[J]. Applied Mathematics and Computation,2015,264(C): 284-299.
|
[2] |
GREIBY I, MISHRA D K, DOLAN K D. Inverse method to sequentially estimate temperature-dependent thermal conductivity of cherry pomace during nonisothermal heating[J]. Journal of Food Engineering,2014,127(4): 16-23.
|
[3] |
肖建庄, 李志卫. 高温下高强混凝土导热系数反演及其变异性[J]. 建筑科学与工程学报, 2014,31(1): 44-49.(XIAO Jianzhuang, LI Zhiwei. Back-analysis and variability of thermal conductivity of high-strength concrete under high temperatures[J]. Journal of Architecture and Civil Engineering,2014,31(1): 44-49.(in Chinese))
|
[4] |
王彦龙, 屈福政. 基于ANSYS和MATLAB智能算法的电石热物性参数反演[J]. 冶金设备, 2014,4(2): 23-28.(WANG Yanlong, QU Fuzheng. Thermal parameter inversion calcium carbide based on ANSYS and MATLAB intelligent algorithm[J]. Metallurgical Equipment,2014,4(2): 23-28.(in Chinese))
|
[5] |
SAAD A, ECHCHELH A, HATTABI M, et al. The identification of effective thermal conductivity for fibrous reinforcement composite by inverse method[J]. Journal of Reinforced Plastics and Composites,2014,33(23): 2183-2191.
|
[6] |
RAMSAROOP R, PERSAD P. Determination of the heat transfer coefficient and thermal conductivity for coconut kernels using an inverse method with a developed hemispherical shell model[J]. Journal of Food Engineering,2012,110(1): 141-157.
|
[7] |
RODRGUEZ F L, NICOLAU V D P. Inverse heat transfer approach for IR image reconstruction: application to thermal non-destructive evaluation[J]. Applied Thermal Engineering,2012,33/34: 109-118.
|
[8] |
MIERZWICZAK M, KOODZIEJ J A. The determination temperature-dependent thermal conductivity as inverse steady heat conduction problem[J]. International Journal of Heat and Mass Transfer,2011,54(4): 790-796.
|
[9] |
CHEN W L, CHOU H M, YANG Y C. An inverse problem in estimating the space-dependent thermal conductivity of a functionally graded hollow cylinder[J]. Composites Part B: Engineering,2013,50(7): 112-119.
|
[10] |
CANNON J R, DUCHATEAU P. An inverse problem for a nonlinear diffusion equation[J]. SIAM Journal on Applied Mathematics,1980,39(2): 272-289.
|
[11] |
唐中华, 钱国红, 钱炜祺. 材料热传导系数随温度变化函数的反演方法[J]. 计算力学学报, 2011,28(3): 377-382.(TANG Zhonghua, QIAN Guohong, QIAN Weiqi. Estimation of temperature-dependent function of thermal conductivity for a material[J]. Chinese Journal of Computational Mechanics,2011,28(3): 377-382.(in Chinese))
|
[12] |
周焕林, 徐兴盛, 李秀丽, 等. 反演二维瞬态热传导问题随温度变化的导热系数[J]. 应用数学和力学, 2014,35(12): 1341-1351.(ZHOU Huanlin, XU Xingsheng, LI Xiuli, et al. Identification of temperature-dependent thermal conductivity for 2-D transient heat conduction problems[J]. Applied Mathematics and Mechanics,2014,35(12): 1341-1351.(in Chinese))
|
[13] |
ZHOU J, YU A, ZHANG Y. A boundary element method for evaluation of the effective thermal conductivity of packed beds[J]. Journal of Heat Transfer,2007,129(3): 363-371.
|
[14] |
HEMATIYAN M R, KHOSRAVIFARD A, SHIAH Y C. A novel inverse method for identification of 3D thermal conductivity coefficients of anisotropic media by the boundary element analysis[J]. International Journal of Heat and Mass Transfer,2015,89(11): 685-693.
|
[15] |
DASHTI ARDAKANI M, KHODADAD M. Identification of thermal conductivity and the shape of an inclusion using the boundary elements method and the particle swarm optimization algorithm[J]. Inverse Problems in Science and Engineering,2009,17(7): 855-870.
|
[16] |
MERA N S, ELLIOTT L, INGHAM D B, et al. Use of the boundary element method to determine the thermal conductivity tensor of an anisotropic medium[J]. International Journal of Heat and Mass Transfer,2001,44(21): 4157-4167.
|
[17] |
YANG X S, DEB S. Cuckoo Search via Lévy Flights [M]. New York: IEEE Publications, 2009.
|