[1] |
ERLANGGA Y A. A robust and efficient iterative method for the numerical solution of the Helmholtz equation[D]. PhD Thesis. Delft: Technische Universiteit Delft, 2005.
|
[2] |
嵇醒, 臧跃龙, 程玉民. 边界元法进展及通用程序[M]. 上海: 同济大学出版社,1997.(JI Xing, ZANG Yuelong, CHENG Yumin. The Development of Boundary Element and General Program [M]. Shanghai: Tongji University Press, 1997.(in Chinese))
|
[3] |
BELYTSCHKO T, KRONGAUZ Y, ORGAN D, et al. Meshless methods: an overview and recent developments[J]. Computer Methods in Applied Mechanics and Engineering,1996,139(1/4): 3-47.
|
[4] |
YAGAWA G, FURUKAWA T. Recent developments of free mesh method[J]. International Journal for Numerical Methods in Engineering, 2000,47(8): 1419-1443.
|
[5] |
LUCY L B. A numerical approach to the testing of the fission hypothesis[J]. The Astronomical Journal, 1977,82: 1013-1024.
|
[6] |
LANCASTER P, SALKAUSKAS K. Surfaces generated by moving least square methods[J]. Mathematics of Computation, 1981,37: 141-158.
|
[7] |
NAYROLES B, TOUZOT G, VILLON P. Generalizing the finite element method: diffuse approximation and diffuse elements[J]. Computational Mechanics, 1992,10(5): 307-318.
|
[8] |
MUKHERJEE Y X, MUKHERJEE S. The boundary node method for potential problems[J]. International Journal for Numerical Methods in Engineering, 1997,40(5): 797-815.
|
[9] |
WANG Jufeng, WANG Jianfei, SUN Fengxin, et al. An interpolating boundary element-free method with nonsingular weight function for two-dimensional potential problems[J]. International Journal of Computational Methods,2013,10(6): 1350043. DOI: 10.1142/S0219876213500436.
|
[10] |
GAO Xiaowei. An effective method for numerical evaluation of 2D and 3D high order singular boundary integrals[J]. Computer Method in Applied Mechanics and Engineering,2010,199(45/48): 2856-2864.
|
[11] |
祝家麟, 袁政强. 边界元分析[M]. 北京: 科学出版社, 2009.(ZHU Jialin, YUAN Zhengqiang. The Analysis of Boundary Element [M]. Beijing: Science Press, 2009.(in Chinese))
|
[12] |
王竹溪, 郭敦仁. 特殊函数概论[M]. 北京: 国防工业出版社, 1983.(WANG Zhuxi, GUO Dunren. Introduction to Special Function [M]. Beijing: National Defend Industry Press, 1983.(in Chinese))
|
[13] |
孙新志, 李小林. 复变量移动最小二乘近似在Sobolev空间中的误差估计[J]. 应用数学和力学, 2016,37(4): 416-425.(SUN Xinzhi, LI Xiaolin. Error estimates for the complex variable moving least square approximation in Sobolev spaces[J]. Applied Mathematics and Mechanics,2016,37(4): 416-425.(in Chinese))
|
[14] |
TELUKUNTA S, MUKHERJEE S. An extended boundary node method for modeling normal derivative discontinuities in potential theory across edges and corners[J]. Engineering Analysis With Boundary Elements, 2004,28(9): 1099-1110.
|
[15] |
LI Xiaolin, ZHANG Shougui. Meshless analysis and applications of a symmetric improved Galerkin boundary node method using the improved moving least-square approximation[J]. Applied Mathematical Modelling,2016,40(4): 2875-2896.
|
[16] |
沈杰罗夫Е Л. 水声学波动问题[M]. 何祚镛, 赵晋英, 译. 北京: 国防工业出版社, 1983.(ШЕНДЕРОВ Е Л. Underwater Acoustic Wave Problems [M]. HE Zuoyong, ZHAO Jinying, transl. Beijing: National Defend Industry Press, 1983.(Chinese version))
|
[17] |
MA Jianjun, ZHU Jialin, LI Maojun. The Galerkin boundary element method for exterior problems of 2-D Helmholtz equation with arbitrary wavenumber[J]. Engineering Analysis With Boundary Elements, 2010,34(12): 1058-1063.
|
[18] |
贾祖朋, 余德浩. 二维Helmholtz方程外问题基于自然边界归化的重叠型区域分解算法[J]. 数值计算与计算机应用, 2001,22(3): 241-253.(JIA Zupeng, YU Dehao. The overlapping DDM based on nature boundary reduction for 2-D exterior Helmholtz problem[J]. Journal of Numerical Methods and Computer Applications,2001,22(3): 241-253.(in Chinese))
|
[19] |
LI Junpu, CHEN Wen, GU Yan. Error bounds of singular boundary method for potential problems[J]. Numerical Methods for Partial Differential Equations,2017,33(6): 1987-2004.
|
[20] |
LI Junpu, FU Zhuojia, CHEN Wen. Numerical investigation on the obliquely incident water wave passing through the submerged breakwater by singular boundary method[J]. Computers & Mathematics With Applications,2016,71(1): 381-390.
|
[21] |
LI Junpu, CHEN Wen, FU Zhuojia, et al. Explicit empirical formula evaluating original intensity factors of singular boundary method for potential and Helmholtz problems[J]. Engineering Analysis With Boundary Elements,2016,73: 161-169.
|