留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

小Reynolds数下粗糙圆管中黏性流场的理论解

徐志敏 宋思远 辛锋先 杨肖虎 卢天健

徐志敏, 宋思远, 辛锋先, 杨肖虎, 卢天健. 小Reynolds数下粗糙圆管中黏性流场的理论解[J]. 应用数学和力学, 2018, 39(2): 123-136. doi: 10.21656/1000-0887.380223
引用本文: 徐志敏, 宋思远, 辛锋先, 杨肖虎, 卢天健. 小Reynolds数下粗糙圆管中黏性流场的理论解[J]. 应用数学和力学, 2018, 39(2): 123-136. doi: 10.21656/1000-0887.380223
XU Zhimin, SONG Siyuan, XIN Fengxian, YANG Xiaohu, LU Tianjian. Analytical Solution for the Viscous Flow of Small Reynolds Numbers in Rough Pipes[J]. Applied Mathematics and Mechanics, 2018, 39(2): 123-136. doi: 10.21656/1000-0887.380223
Citation: XU Zhimin, SONG Siyuan, XIN Fengxian, YANG Xiaohu, LU Tianjian. Analytical Solution for the Viscous Flow of Small Reynolds Numbers in Rough Pipes[J]. Applied Mathematics and Mechanics, 2018, 39(2): 123-136. doi: 10.21656/1000-0887.380223

小Reynolds数下粗糙圆管中黏性流场的理论解

doi: 10.21656/1000-0887.380223
基金项目: 国家自然科学基金(中德(NSFC-DFG)合作研究项目)(11761131003);国家自然科学基金(51528501;11772248);国家自然科学基金委员会-中国航天科技集团公司航天先进制造技术研究联合基金(U1737107);陕西省留学人员科技活动择优资助项目(2017025)
详细信息
    作者简介:

    徐志敏(1995—),男,博士生(E-mail: 1239231863@qq.com);辛锋先(1982—),男,副教授,博士生导师(通讯作者. E-mail: fxxin@mail.xjtu.edu.cn);卢天建(1964—),男,教授,博士生导师(通讯作者. E-mail: tjlu@mail.xjtu.edu.cn).

  • 中图分类号: O357

Analytical Solution for the Viscous Flow of Small Reynolds Numbers in Rough Pipes

Funds: The National Natural Science Foundation of China(11761131003;51528501;11772248;U1737107)
  • 摘要: 在小Reynolds数下,针对粗糙圆管和花瓣圆管中的流场问题,将管内的粗糙表面视为光滑表面受到小扰动的情况,采用修正的摄动方法,对流体参数做微小扰动下的摄动展开.同时将具有复杂形貌的边界条件进行Taylor展开,进而近似得到光滑边界处的边界条件.联立求解流体力学方程,在一阶摄动展开的前提下,得到压力梯度的近似解,从而求出管道的静流阻和曲折度.通过数值模拟得到的流体参数和采用修正摄动方法求出的结果吻合良好.
  • [1] BARNARD A C L, LOPEZ L, HELLUMS J D. Basic theory of blood flow in capillaries[J]. Microvascular Research,1968,1(1): 23-34.
    [2] ACHDOU Y, AVELLANEDA M. Influence of pore roughness and pore-size dispersion in estimating the permeability of a porous medium from electrical measurements[J]. Physics of Fluids A: Fluid Dynamics,1992,4(12): 2651-2673.
    [3] DARCY H. Recherches Expérimentales Relatives au Mouvement de L’Eau Dans les Tuyaux [M]. Mallet-Bachelier, 1857.
    [4] VON MISES R. Elemente der technischen hydromechanik[J]. Monatshefte für Mathematik und Physik,1915,26(1): A27-A28.
    [5] COLEBROOK C F, WHITE C M. Experiments with fluid friction in roughened pipes[J]. Proceedings of the Royal Society of London (Series A): Mathematical and Physical Sciences,1937,161(906): 367-381.
    [6] COLEBROOK C F, BLENCH T, CHATLEY H, et al. Turbulent flow in pipes, with particular reference to the transition region between the smooth and rough pipe laws[J]. Journal of the Institution of Civil Engineers,1939,12(8): 393-422.
    [7] NIKURADSE J. Laws of flow in rough pipes[R]. Technical Report Archive & Image Library, 1950: 1-63.
    [8] MOODY L F. Friction factors for pipe flow[J]. Asme Trans V,1944,66: 671-684.
    [9] POZRIKIDIS C. The flow of a liquid film along a periodic wall[J]. Journal of Fluid Mechanics,2006,188: 275-300.
    [10] QU Weilin, MALA G M, LI Dongqing. Pressure-driven water flows in trapezoidal silicon microchannels[J]. International Journal of Heat & Mass Transfer,2000,43(3): 353-64.
    [11] SCHMITT D J, KANDLIKAR S G. Effects of repeating microstructures on pressure drop in rectangular minichannels[C]//ASME 3rd International Conference on Microchannels and Minichannels . Toronto, Ontario, Canada, 2005: 281-289.
    [12] DHARAIYA V V, KANDLIKAR S G. A numerical study on the effects of 2D structured sinusoidal elements on fluid flow and heat transfer at microscale[J]. International Journal of Heat & Mass Transfer,2013,57(1): 190-20 [13]SIDDIQA S, HOSSAIN M A, GORLA R S R. Natural convection flow of viscous fluid over triangular wavy horizontal surface[J]. Computers & Fluids,2015,106: 130-134.
    [13] KANDLIKAR S G, SCHMITT D, CARRANO A L, et al. Characterization of surface roughness effects on pressure drop in single-phase flow in minichannels[J]. Physics of Fluids,2005,17(10): 100606. DOI: 10.1063/1.1896985.
    [14] American Society for Testing and Materials. Standard test method for airflow resistance of acoustical materials: ASTM C522-03[S]. 2016.
    [15] LANDAU L D, LIFSHITZ E M. Course of Theoretical Physics [M]. Elsevier, 2013.
  • 加载中
计量
  • 文章访问数:  1260
  • HTML全文浏览量:  147
  • PDF下载量:  896
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-04
  • 修回日期:  2017-09-11
  • 刊出日期:  2018-02-15

目录

    /

    返回文章
    返回