[1] |
CELIKOVSKY S, LYNNYK V, CHEN G. Robust synchronization of a class of chaotic networks[J]. Journal of the Franklin Institute,2013,350(10): 2936-2948.
|
[2] |
GAO Lixin, TONG Changfei, WANG Liyong. H∞ dynamic output feedback consensus control for discrete-time multi-agent systems with switching topology[J]. Arabian Journal for Science & Engineering,2014,39(2): 1477-1487.
|
[3] |
BELYKH V N, BELYKH I V, HASLERB M. Connection graph stability method for synchronized coupled chaotic systems[J]. Physica D: Nonlinear Phenomena,2004,195(1/2): 159-187.
|
[4] |
BELYKH I V, BELYKH V N, HASLER M. Blinking model and synchronization in small-world networks with a time-varying coupling[J]. Physica D: Nonlinear Phenomena,2004,195(1/2): 188-206.
|
[5] |
TANG Z, JU H P, LEE T H. Topology and parameters recognition of uncertain complex networks via nonidentical adaptive synchronization[J]. Nonlinear Dynamics,2016,85(4): 2171-2181.
|
[6] |
WU Kaining, ZHAO Bingxin, YAO Yu. Synchronization of coupled neutral-type delay partial differential systems[J]. Circuits, Systems, and Signal Processing,2016,35(2): 443-458.
|
[7] |
HAN Min, ZHANG Yamei. Complex function projective synchronization in drive-response complex-variable dynamical networks with coupling time delays[J]. Journal of the Franklin Institute,2016,353(8): 1742-1758.
|
[8] |
PECORA L M, CARROLL T L. Master stability functions for synchronized coupled systems[J]. Physical Review Letters,1998,80(10): 2109-2112.
|
[9] |
DHAMALA M, JIRSA V K, DING M Z. Enhancement of neural synchrony by time delay[J]. Physical Review Letters,2004,92(7): 074104.
|
[10] |
FRASCA M, BUSCARINO A, RIZZO A, et al. Synchronization of moving chaotic agents[J]. Physical Review Letters, 2008,100(4): 044102.
|
[11] |
PERUANI F, SIBONA G J. Dynamics and steady states in excitable mobile agent systems[J]. Physical Review Letters,2008,100(16): 168103.
|
[12] |
WU Xuefei. Complex projective synchronization in drive-response stochastic networks with switching topology and complex-variable systems[J]. Advances in Difference Equations,2015,2015: 129. DOI: 10.1186/s13662-015-0468-9.
|
[13] |
ZHOU Xianghui, ZHOU Wuneng, YANG Jun, et al. Stochastic synchronization of neural networks with multiple time-varying delays and Markovian jump[J]. Journal of the Franklin Institute,2015,352(3): 1265-1283.
|
[14] |
YU Wenwu, DELELLIS P, CHEN Guanrong, et al. Distributed adaptive control of synchronization in complex networks[J]. IEEE Transactions on Automatic Control,2012,57(8): 2153-2158.
|
[15] |
BAGHERI A, OZGOLI S. Exponentially impulsive projective and lag synchronization between uncertain complex networks[J]. Nonlinear Dynamics,2016,84(4): 2043-2055.
|
[16] |
WANG Tianbo, ZHOU Wuneng, ZHAO Shouwei. Robust synchronization for stochastic delayed complex networks with switching topology and unmodeled dynamics via adaptive control approach[J]. Communications in Nonlinear Science and Numerical Simulation,2013,18(8): 2097-2106.
|
[17] |
LI Chaojie, YU Wenwu, HUANG Tingwen. Impulsive synchronization schemes of stochastic complex networks with switching topology: average time approach[J]. Neural Networks,2014,54(6): 85-94.
|
[18] |
LIU Tao, HILL D J, ZHAO Jun. Incremental-dissipativity-based output synchronization of dynamical networks with switching topology[C]//The 53rd IEEE Annual Conference on Decision and Control (CDC 2014).Los Angeles, California, 2014.
|
[19] |
QIU Xiang, YU Li, ZHANG Dan. Stabilization of supply networks with transportation delay and switching topology[J]. Neurocomputing,2015,155: 247-252.
|
[20] |
LIU Jian, LIU Shutang, SPROTT J C. Adaptive complex modified hybrid function projective synchronization of different dimensional complex chaos with uncertain complex parameters[J]. Nonlinear Dynamics,2016,83(1/2): 1109-1121.
|
[21] |
JIN Xiaozheng, YANG Guanghong. Adaptive sliding mode fault-tolerant control for nonlinearly chaotic systems against network faults and time-delays[J]. Journal of the Franklin Institute,2013,350(5): 1206-1220.
|
[22] |
WANG Xiaofan, CHEN Guanrong. Synchronization in small-world dynamical networks[J]. International Journal Bifurcation and Chaos,2002,12(1): 187-192.
|
[23] |
YANG Yongqing, CAO Jinde. Exponential synchronization of the complex dynamical networks with a coupling delay and impulsive effects[J]. Nonlinear Analysis: Real World Applications,2010,11(3): 1650-1659.
|
[24] |
WANG Lei, CHEN M Z Q, WANG Qingguo. Bounded synchronization of a heterogeneous complex switched network[J].Automatica,2015,56: 19-24.
|
[25] |
ZHANG Chunmei, LI Wenxue, WANG Ke. Graph-theoretic method on exponential synchronization of stochastic coupled networks with Markovian switching[J]. Nonlinear Analysis: Hybrid Systems,2015,15(3): 37-51.
|
[26] |
WANG Lei, WANG Qingguo. Synchronization in complex networks with switching topology[J]. Physics Letters A,2011,375(34): 3070-3074.
|
[27] |
WU Xiangjun, LU Hongtao. Generalized projective synchronization between two different general complex dynamical networks with delayed coupling[J]. Physics Letters A,2010,374(38): 3932-3941.
|
[28] |
ALI M S, ARIK S, SARAVANAKUMAR R. Delay-dependent stability criteria of uncertain Markovian jump neural networks with discrete interval and distributed time-varying delays[J].Neurocomputing,2015,158(1): 167-173.
|
[29] |
杜利明, 赵军. 具有切换拓扑结构的非恒等节点复杂网络同步化判据[J]. 控制理论与应用, 2013,30(5): 649-655.(DU Liming, ZHAO Jun. A synchronization criterion for dynamical networks with non-identical nodes and switching topology[J]. Control Theory & Applications,2013,30(5): 649-655.(in Chinese))
|
[30] |
WU Yongqing, LIU Li. Exponential outer synchronization between two uncertain time-varying complex networks with nonlinear coupling[J]. Entropy,2015,17(5): 3097-3109.
|
[31] |
闫欢, 赵振江, 宋乾坤. 具有泄漏时滞的复值神经网络的全局同步性[J]. 应用数学和力学, 2016,37(8): 832-841.(YAN Huan,ZHAO Zhenjiang, SONG Qiankun. Global synchronization of complex-valued neural networks with leakage time delays[J]. Applied Mathematics and Mechanics,2016,37(8): 832-841.(in Chinese))
|
[32] |
张玮玮, 吴然超. 基于线性控制的分数阶混沌系统的对偶投影同步[J]. 应用数学和力学, 2016,37(7): 710-717.(ZHANG Weiwei, WU Ranchao. Dual projective synchronization of fractional-order chaotic systems with a linear controller[J]. Applied Mathematics and Mechanics,2016,37(7): 710-717.(in Chinese))
|
[33] |
邹丽, 王振, 宗智, 等. 指数同伦法对Cauchy条件下变系数Burgers方程的解析与数值分析[J]. 应用数学和力学, 2014,35(7): 777-789.(ZOU Li, WANG Zhen, ZONG Zhi, et al. Analytical and numerical investigation of the variable coefficient Burgers equation under Cauchy condition with the exponential homotopy method[J]. Applied Mathematics and Mechanics,2014,35(7): 777-789.(in Chinese))
|