留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

分数阶反向累加非等间距GM(1,1)模型及应用

曾亮

曾亮. 分数阶反向累加非等间距GM(1,1)模型及应用[J]. 应用数学和力学, 2018, 39(7): 841-854. doi: 10.21656/1000-0887.380252
引用本文: 曾亮. 分数阶反向累加非等间距GM(1,1)模型及应用[J]. 应用数学和力学, 2018, 39(7): 841-854. doi: 10.21656/1000-0887.380252
ZENG Liang. Non-Equidistant GM(1,1) Models Based on Fractional-Order Reverse Accumulation and the Application[J]. Applied Mathematics and Mechanics, 2018, 39(7): 841-854. doi: 10.21656/1000-0887.380252
Citation: ZENG Liang. Non-Equidistant GM(1,1) Models Based on Fractional-Order Reverse Accumulation and the Application[J]. Applied Mathematics and Mechanics, 2018, 39(7): 841-854. doi: 10.21656/1000-0887.380252

分数阶反向累加非等间距GM(1,1)模型及应用

doi: 10.21656/1000-0887.380252
基金项目: 国家自然科学基金(61472089);广东省普通高校特色创新项目(2016KTSCX164)
详细信息
    作者简介:

    曾亮(1982—),男,副教授(E-mail: zengliang19820809@126.com).

  • 中图分类号: O29

Non-Equidistant GM(1,1) Models Based on Fractional-Order Reverse Accumulation and the Application

Funds: The National Natural Science Foundation of China(61472089)
  • 摘要: 针对非等间距递减序列的预测问题,首先构建了一阶反向累加非等间距GM(1,1)模型(简称为非等间距GOM(1,1)模型),并给出了模型参数的最小二乘解和可用于预测的离散时间响应式.为进一步提高模拟预测精度,利用分数阶累加思想,提出了分数阶非等间距GOM(1,1)模型.以平均模拟相对误差最小化为目标,建立非线性规划模型可求解得到最优阶数.最后,以数值模拟和钛合金疲劳强度随温度变化预测为例,证实了该文提出模型的有效性和实用性.
  • [1] DENG Julong. Control problem of grey systems[J]. Systems & Control Letters,1982,1(5): 288-294.
    [2] ZHAO Huiru, GUO Sen. An optimized grey model for annual power load forecasting[J]. Energy,2016,107: 272-286.
    [3] LIU Li, WANG Qianru, WANG Jianzhou, et al. A rolling grey model optimized by particle swarm optimization in economic prediction[J]. Computational Intelligence,2016,32(3): 391-419.
    [4] WU Chengmau, WEN Jetchau, CHANG Kouchiang. Evaluation of the gray model GM(1,1) applied to soil particle distribution[J]. Soil Science Society of America Journal,2009,73(6): 1775-1785.
    [5] LI Cuiping, QIN Jiexuan, LI Jiajie, et al. The accident early warning system for iron and steel enterprises based on combination weighting and grey prediction model GM(1,1)[J]. Safety Science,2016,89: 19-27.
    [6] 宋中民, 肖新平. 反向累加生成及灰色GOM(1,1)模型[J]. 武汉理工大学学报(交通科学与工程版), 2002,26(4): 531-533.(SONG Zhongmin, XIAO Xinping. The accumulated generating operation in opposite direction and its use in grey model GOM(1,1)[J]. Journal of Wuhan University of Technology(Transportation Science & Engineering),2002,26(4): 531-533.(in Chinese))
    [7] 关叶青, 刘桦. 递减序列的灰色建模方法[J]. 系统工程, 2015,33(4): 154-158.(GUAN Yeqing, LIU Hua. Grey model based on descending sequence[J]. Systems Engineering,2015,33(4): 154-158.(in Chinese))
    [8] 杨知, 任鹏, 党耀国. 反向累加生成与灰色GOM(1,1)模型的优化[J]. 系统工程理论与实践, 2009,29(8): 160-164.(YANG Zhi, REN Peng, DANG Yaoguo. Grey opposite-direction accumulated generating and optimization of GOM(1,1) model[J]. Systems Engineering: Theory & Practice,2009,29(8):160-164.(in Chinese))
    [9] 何霞, 刘卫锋. 两个初值修正灰色GOM(1,1)模型及其等价性研究[J]. 杭州师范大学学报(自然科学版), 2011,10(3): 217-222.(HE Xia, LIU Weifeng. Two grey GOM(1,1) models based on modified initial value and its equivalence[J].Journal of Hangzhou Normal University(Natural Science Edition),2011,10(3): 217-222.(in Chinese))
    [10] 练郑伟, 党耀国, 王正新. 反向累加生成的特性及GOM(1,1)模型的优化[J]. 系统工程理论与实践, 2013,33(9): 2306-2312.(LIAN Zhengwei, DANG Yaoguo, WANG Zhengxin. Properties of accumulated generating operation in opposite-direction and optimization of GOM(1,1) model[J]. Systems Engineering: Theory & Practice,2013,33(9): 2306-2312.(in Chinese))
    [11] MONJE C A, CHEN Y Q, VINAGRE B M, et al. Fractional-Order Systems and Controls: Fundamentals and Applications[M]. London: Springer, 2010.
    [12] 张玮玮, 吴然超. 基于线性控制的分数阶混沌系统的对偶投影同步[J]. 应用数学和力学, 2016,37(7): 710-717.(ZHANG Weiwei, WU Ranchao. Dual projective synchronization of fractional-order chaotic systems with a linear controller[J]. Applied Mathematics and Mechanics,2016,37(7): 710-717.(in Chinese))
    [13] WU Lifeng, LIU Sifeng, YAO Ligen, et al. Grey system model with the fractional order accumulation[J]. Communications in Nonlinear Science and Numerical Simulation,2013,18(7): 1775-1785.
    [14] 吴利丰, 刘思峰, 姚立根. 基于分数阶累加的离散灰色模型[J]. 系统工程理论与实践, 2014,34(7): 1822-1827.(WU Lifeng, LIU Sifeng, YAO Ligen. Discrete grey model based on fractional order accumulate[J]. Systems Engineering: Theory & Practice,2014,34(7): 1822-1827.(in Chinese))
    [15] 刘解放, 刘思峰, 吴利丰, 等. 分数阶反向累加离散灰色模型及其应用研究[J]. 系统工程与电子技术, 2016,38(3): 719-724.(LIU Jiefang, LIU Sifeng, WU Lifeng, et al. Fractional order reverse accumulative discrete grey model and its application[J]. Systems Engineering and Electronics,2016,38(3): 719-724.(in Chinese))
    [16] 刘解放, 刘思峰, 吴利丰, 等. 分数阶反向累加NHGM(1,1, k )模型及其应用研究[J]. 系统工程理论与实践, 2016,36(4): 1033-1041.(LIU Jiefang, LIU Sifeng, WU Lifeng, et al. Research on fractional order reverse accumulative NHGM(1,1,k) model and its application[J]. Systems Engineering: Theory & Practice,2016,36(4): 1033-1041.(in Chinese))
    [17] 战立青, 施化吉. 近似非齐次指数数据的灰色建模方法与模型[J]. 系统工程理论与实践, 2013,33(3): 689-694.(ZHAN Liqing, SHI Huaji. Methods and model of grey modeling for approximation non-homogenous exponential data[J]. Systems Engineering: Theory & Practice,2013,33(3): 689-694.(in Chinese))
    [18] 于丽亚, 王丰效. 基于粒子群算法的非等距GOM(1,1)模型[J]. 纯粹数学与应用数学, 2011,27(4): 472-476.(YU Liya, WANG Fengxiao. Non-equidistant GOM(1,1) model based on particle swarm optimization algorithm[J]. Pure and Applied Mathematics,2011,27(4): 472-476.(in Chinese))
    [19] 屈婉玲. 组合数学[M]. 北京: 北京大学出版社, 1989: 48-51.(QU Wanling. Combinatorial Mathematics [M]. Beijing: Peking University Press, 1989: 48-51.(in Chinese))
    [20] 罗佑新, 周继荣. 非等间距GM(1,1)模型及其在疲劳试验数据处理和疲劳试验在线监测中的应用[J]. 机械强度, 1996,18(3): 60-63.(LUO Youxin, ZHOU Jirong. Nonequidistance GM(1,1) model and its application in fatigue experimental data processing and on-line control[J]. Journal of Mechanical Strength,1996,18(3): 60-63.(in Chinese))
    [21] 王正新, 党耀国, 赵洁珏. 优化的GM(1,1)幂模型及其应用[J]. 系统工程理论与实践, 2012,32(9): 1973-1978.(WANG Zhengxin, DANG Yaoguo, ZHAO Jiejue. Optimized GM(1,1) power model and its application[J]. Systems Engineering: Theory & Practice,2012,32(9): 1973-1978.(in Chinese))
    [22] 韩晋, 杨岳, 陈峰, 等. 基于非等时距加权灰色模型与神经网络的组合预测算法[J]. 应用数学和力学, 2013,34(4): 408-419.(HAN Jin, YANG Yue, CHEN Feng, et al. Combination forecasting algorithm based on non-equal interval weighted grey model and neural network[J]. Applied Mathematics and Mechanics,2013,34(4): 408-419.(in Chinese))
  • 加载中
计量
  • 文章访问数:  1143
  • HTML全文浏览量:  223
  • PDF下载量:  549
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-07
  • 修回日期:  2017-11-09
  • 刊出日期:  2018-07-15

目录

    /

    返回文章
    返回