留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一类Lasota-Wazewska模型伪概周期解的全局吸引性

王丽 梁博强 刘金

王丽, 梁博强, 刘金. 一类Lasota-Wazewska模型伪概周期解的全局吸引性[J]. 应用数学和力学, 2018, 39(9): 1091-1098. doi: 10.21656/1000-0887.380256
引用本文: 王丽, 梁博强, 刘金. 一类Lasota-Wazewska模型伪概周期解的全局吸引性[J]. 应用数学和力学, 2018, 39(9): 1091-1098. doi: 10.21656/1000-0887.380256
WANG Li, LIANG Boqiang, LIU Jin. Global Attractivity of Pseudo Almost Periodic Solutions to a Class of Lasota-Wazewska Models[J]. Applied Mathematics and Mechanics, 2018, 39(9): 1091-1098. doi: 10.21656/1000-0887.380256
Citation: WANG Li, LIANG Boqiang, LIU Jin. Global Attractivity of Pseudo Almost Periodic Solutions to a Class of Lasota-Wazewska Models[J]. Applied Mathematics and Mechanics, 2018, 39(9): 1091-1098. doi: 10.21656/1000-0887.380256

一类Lasota-Wazewska模型伪概周期解的全局吸引性

doi: 10.21656/1000-0887.380256
基金项目: 陕西省自然科学基础研究计划(2017JM5140)
详细信息
    作者简介:

    王丽(1982—),女,副教授,博士(通讯作者. E-mail: lwangmath@nwpu.edu.cn).

  • 中图分类号: O175

Global Attractivity of Pseudo Almost Periodic Solutions to a Class of Lasota-Wazewska Models

  • 摘要: Lasota-Wazewska模型常被用来描述动物体内红血球的再生情况.基于Banach压缩映射原理同时构造合适的Lyapunov函数,针对一类带时滞的Lasota-Wazewska模型研究了其伪概周期解的存在性、唯一性及全局吸引性.该文结果具有一定的优越性,且能够使关于Lasota-Wazewska模型动力学行为的刻画更加丰富.
  • [1] WAZEWSKA-CZYZEWSKA M, LASOTA A. Mathematical problems of the dynamics of a system of red blood cells[J]. Mat Stos,1976,17(6): 23-40.
    [2] 景冰清, 王丽丽. Lasota-Wazewska模型的唯一周期正解的存在性[J]. 太原科技大学学报, 2008,29(3): 217-219.(JING Bingqing, WANG Lili. Existence of unique positive periodic solution for a Lasota-Wazewska model[J]. Journal of Taiyuan University of Science and Technology,2008,29(3): 217-219.(in Chinese))
    [3] CHEN L, CHEN F. Positive periodic solution of the discrete Lasota-Wazewska model with impulse[J]. Journal of Difference Equations and Applications,2014,20(3): 406-412.
    [4] 马苏奇, 陆启韶. 具有非线性出生率的时滞Lasota-Wazewska模型的稳定性分岔[J]. 南京师范大学学报(自然科学版), 2005,28(2): 1-5.(MA Suqi, LU Qishao. Stability bifurcations of Lasota-Wazewska-type model with maturation delay and nonlinear birth rate[J]. Journal of Nanjing Normal University (Natural Science),2005,28(2): 1-5.(in Chinese))
    [5] 王爱丽. 具有连续时滞的Lasota-Wazewska模型的Hopf-分支[J]. 江西师范大学学报(自然科学版), 2008,32(3): 330-334.(WANG Aili. The Hopf-bifurcation in a Lasota-Wazewska-type model with continuous delays[J]. Journal of Jiangxi Normal University (Natural Science),2008,32(3): 330-334.(in Chinese))
    [6] WANG L, YU M, NIU P. Periodic solution and almost periodic solution of impulsive Lasota-Wazewska model with multiple time-varying delays[J]. Computers and Mathematics With Applications,2012,64(8): 2383-2394.
    [7] 柏琼, 冯春华. 具非线性脉冲时滞的Lasota-Wazewska模型概周期解的存在性与稳定性[J]. 广西科学, 2011,18(4): 329-332.(BAI Qiong, FENG Chunhua. Existence and stability of almost periodic solutions for nonlinear impulsive Lasota-Wazewska model[J]. Guangxi Sciences,2011,18(4): 329-332.(in Chinese))
    [8] STAMOV G T. On the existence of almost periodic solutions for the impulsive Lasota-Wazewska model[J]. Applied Mathematics Letters,2009,22(4): 516-520.
    [9] 陈晓英, 施春玲. 一类具有无穷时滞的Lasota-Wazewska模型的概周期解[J]. 福州大学学报(自然科学版), 2014,42(1): 8-11.(CHEN Xiaoying, SHI Chunling. Almost periodic solution for a Lasota-Wazewska model with infinte delay[J]. Journal of Fuzhou University (Natural Science Edition),2014,42(1): 8-11.(in Chinese))
    [10] 龙志文. 几类时滞生物数学模型的全局动力学分析[D]. 博士学位论文. 长沙: 湖南大学, 2016.(LONG Zhiwen. Global dynamics analysis of several biological models with time delays[D]. PhD Thesis. Changsha: Hunan University, 2016.(in Chinese))
    [11] RIHANI S, KESSAB A, CHERIF F. Pseudo almost periodic solutions for a Lasota-Wazewska model[J]. Electronic Journal of Differential Equations,2016,2016(62): 1-17.
    [12] 廖书, 杨炜明. 考虑媒体播报效应的双时滞传染病模型[J]. 应用数学和力学, 2017,38(12): 1412-1424.(LIAO Shu, YANG Weiming. An epidemic model with dual delays in view of media coverage[J]. Applied Mathematics and Mechanics,2017,38(12): 1412-1424.(in Chinese))
    [13] 彭剑, 李禄欣, 胡霞, 等. 时滞影响下受控斜拉索的参数振动稳定性[J]. 应用数学和力学, 2017,38(2): 181-188.(PENG Jian, LI Luxin, HU Xia, et al. Parametric vibration stability of controlled stay cables with time delays[J]. Applied Mathematics and Mechanics,2017,38(2): 181-188.(in Chinese))
    [14] ZHANG Chuanyi. Almost Periodic Type Functions and Ergodicity[M]. Beijing: Science Press, 2003.
    [15] SAMOILENKO A M, PERESTYUK N A. Impulsive Differential Equations[M]. Singapore: World Scientific, 1995.
  • 加载中
计量
  • 文章访问数:  1193
  • HTML全文浏览量:  184
  • PDF下载量:  413
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-14
  • 修回日期:  2018-02-01
  • 刊出日期:  2018-09-15

目录

    /

    返回文章
    返回