留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

关于向量值D-半预不变真拟凸映射的刻画

黄应全

黄应全. 关于向量值D-半预不变真拟凸映射的刻画[J]. 应用数学和力学, 2018, 39(3): 364-370. doi: 10.21656/1000-0887.380269
引用本文: 黄应全. 关于向量值D-半预不变真拟凸映射的刻画[J]. 应用数学和力学, 2018, 39(3): 364-370. doi: 10.21656/1000-0887.380269
HUANG Yingquan. Characterizations of D-Properly Semi-Prequasi-Invex Mappings[J]. Applied Mathematics and Mechanics, 2018, 39(3): 364-370. doi: 10.21656/1000-0887.380269
Citation: HUANG Yingquan. Characterizations of D-Properly Semi-Prequasi-Invex Mappings[J]. Applied Mathematics and Mechanics, 2018, 39(3): 364-370. doi: 10.21656/1000-0887.380269

关于向量值D-半预不变真拟凸映射的刻画

doi: 10.21656/1000-0887.380269
基金项目: 国家自然科学基金(11471059;11626048;11701057);重庆市基础科学与前沿技术研究计划(cstc2014jcyjA00033;cstc2015jcyjB00001;cstc2016jcyjA0178);重庆市高校创新团队建设计划(CXTDX201601026);重庆市教委科技计划(KJ1600613;KJ1400630)
详细信息
    作者简介:

    黄应全(1973—),男,讲师,硕士(E-mail: huangyq1110@ctbu.edu.cn).

  • 中图分类号: O221.6

Characterizations of D-Properly Semi-Prequasi-Invex Mappings

Funds: The National Natural Science Foundation of China(11471059;11626048;11701057)
  • 摘要: 研究了D-半预不变真拟凸映射的性质.首先,举例验证了满足条件E的η是大量存在的.然后,说明了D-半预不变真拟凸映射的水平集是半不变凸集,并运用D-上半连续性、*-上半连续性和中间点的D-半预不变真拟凸性,给出了D-半预不变真拟凸映射的两个等价刻画.最后,在中间点D-严格半预不变真拟凸性条件下,建立了D-半严格半预不变真拟凸映射和D-严格半预不变真拟凸映射的等价关系.
  • [1] HANSON M A. On sufficiency of the Kuhn-Tucker conditions[J]. Journal of Mathematical Analysis and Applications,1981,80(2): 545-550.
    [2] WEIR T, MOND B. Pre-invex functions in multiple objective optimization[J]. Journal of Mathematical Analysis and Applications,1988,136(1): 29-38.
    [3] WEIR T, JEYAKUMAR V. A class of nonconvex functions and mathematical programming[J]. Bulletin of the Australian Mathematical Society,1988,38(2): 177-189.
    [4] YANG Xinmin, LI Duan. On properties of preinvex functions[J]. Journal of Mathematical Analysis and Applications,2001,256(1): 229-241.
    [5] YANG Xinmin, LI Duan. Semistrictly preinvex functions[J]. Journal of Mathematical Analysis and Applications,2001,258(1): 287-308.
    [6] YANG Xiaoqi, CHEN Guangya. A class of nonconvex functions and pre-variational inequalities[J]. Journal of Mathematical Analysis and Applications,1992,169(2): 359-373.
    [7] 彭建文. 向量值映射D-η-预不变真拟凸的性质[J]. 系统科学与数学, 2003,23(3): 306-314.(PENG Jianwen. Properties of D-η-properly prequasiinvex function[J]. Journal of Systems Science and Mathematical Sciences,2003,23(3): 306-314.(in Chinese))
    [8] 彭再云, 王堃颍, 赵勇, 等. D-η-半预不变凸映射的性质与应用[J]. 应用数学和力学, 2014,35(2): 202-211.(PENG Zaiyun, WANG Kunying, ZHAO Yong, et al. Characterizations and applications of D-η-semipreinvex mappings[J]. Applied Mathematics and Mechanics,2014,35(2): 202-211.(in Chinese))
    [9] 彭再云, 李科科, 唐平, 等. 向量值D-半预不变真拟凸映射的判定和性质[J]. 重庆师范大学学报(自然科学版), 2014,31(5): 18-25.(PENG Zaiyun, LI Keke, TANG Ping, et al. Characterizations and criterions of D-semiprequasi-invex mappings[J]. Journal of Chongqing Normal University (Natural Science),2014,31(5): 18-25.(in Chinese))
    [10] 唐莉萍, 杨新民. 关于D-半预不变凸性的某些新性质[J]. 应用数学和力学, 2015,36(3): 325-331.(TANG Liping, YANG Xinmin. A note on some new characterizations of D-〖KG-*4〗semi-preinvexity[J]. Applied Mathematics and Mechanics,2015,36(3): 325-331.(in Chinese))
    [11] 杨新民, 戎卫东. 广义凸性及其应用[M]. 北京: 科学出版社, 2016.(YANG Xinmin, RONG Weidong. Generalized Convexity and Its Applications [M]. Beijing: Science Press, 2016.(in Chinese))
    [12] 彭建文. 广义凸性及其在最优化问题中的应用[D]. 博士学位论文. 呼和浩特: 内蒙古大学, 2005.(PENG Jianwen. Generalized convexity with applications in optimization problems[D]. PhD Thesis. Hohhot: Inner Mongolia University, 2005.(in Chinese))
    [13] 彭再云, 李科科, 张石生.D-η-E-半预不变凸映射与向量优化[J]. 应用数学和力学, 2014,35(9): 1020-1032.(PENG Zaiyun, LI Keke, ZHANG Shisheng. D-η-E-semipreinvex vector mappings and vector optimization[J]. Applied Mathematics and Mechanics,2014,35(9): 1020-1032.(in Chinese))
    [14] ity of fractional order Hopfield neural networks[J]. Nonlinear Analysis: Hybrid Systems,2015,16(2): 104-121.
  • 加载中
计量
  • 文章访问数:  1200
  • HTML全文浏览量:  166
  • PDF下载量:  455
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-11
  • 修回日期:  2017-11-07
  • 刊出日期:  2018-03-15

目录

    /

    返回文章
    返回