留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

时滞神经网络随机抽样控制的状态估计

曾德强 吴开腾 宋乾坤 张瑞梅 钟守铭

曾德强, 吴开腾, 宋乾坤, 张瑞梅, 钟守铭. 时滞神经网络随机抽样控制的状态估计[J]. 应用数学和力学, 2018, 39(7): 821-832. doi: 10.21656/1000-0887.380273
引用本文: 曾德强, 吴开腾, 宋乾坤, 张瑞梅, 钟守铭. 时滞神经网络随机抽样控制的状态估计[J]. 应用数学和力学, 2018, 39(7): 821-832. doi: 10.21656/1000-0887.380273
ZENG Deqiang, WU Kaiteng, SONG Qiankun, ZHANG Ruimei, ZHONG Shouming. State Estimation for Delayed Neural Networks With Stochastic SampledData Control[J]. Applied Mathematics and Mechanics, 2018, 39(7): 821-832. doi: 10.21656/1000-0887.380273
Citation: ZENG Deqiang, WU Kaiteng, SONG Qiankun, ZHANG Ruimei, ZHONG Shouming. State Estimation for Delayed Neural Networks With Stochastic SampledData Control[J]. Applied Mathematics and Mechanics, 2018, 39(7): 821-832. doi: 10.21656/1000-0887.380273

时滞神经网络随机抽样控制的状态估计

doi: 10.21656/1000-0887.380273
基金项目: 国家自然科学基金(61773004);重庆市高校创新团队项目(CXTDX201601022)
详细信息
    作者简介:

    曾德强(1979—), 男, 副教授(E-mail: zengdq22@163.com);吴开腾(1964—), 男, 教授, 博士(E-mail: wukaiteng@263.net);宋乾坤(1963—), 男, 教授, 博士(通讯作者. E-mail: qiankunsong@163.com);张瑞梅(1988—), 女, 博士(E-mail: ruimeizhang163@163.com);钟守铭(1955—), 男, 教授(E-mail: zhongsm@uestc.edu.cn).

  • 中图分类号: O175.13

State Estimation for Delayed Neural Networks With Stochastic SampledData Control

Funds: The National Natural Science Foundation of China(61773004)
  • 摘要: 研究了时滞神经网络随机抽样控制的状态估计问题.首先, 给出了随机抽样区间和抽样输入时滞的统一概率结构.基于此结构, 构造了一个包含新的锯齿结构项的Lyapunov泛函.然后, 运用不等式放缩技术, 得到了误差系统随机稳定的保守性更低的标准,并设计出了合适的状态估计器.最后, 数值仿真算例验证了所得结果的优势和有效性.
  • [1] ZENG D Q, ZHANG R M, ZHONG S M, et al. Sampled-data synchronization control for Markovian delayed complex dynamical networks via a novel convex optimization method[J]. Neurocomputing,2017,266: 606-618.
    [2] 王利敏, 宋乾坤, 赵振江. 基于忆阻的分数阶时滞复值神经网络的全局渐进稳定性[J]. 应用数学和力学, 2017,38(3): 333-346.(WANG Limin, SONG Qiankun, ZHAO Zhenjiang. Global asymptotic stability of memristor-based fractional-order complex-valued neural networks with time delays[J]. Applied Mathematics and Mechanics,2017,38(3): 333-346.(in Chinese))
    [3] 舒含奇, 宋乾坤. 带有时滞的Clifford值神经网络的全局指数稳定性[J]. 应用数学和力学, 2017,38(5): 513-525.(SHU Hanqi, SONG Qiankun. Global stability of Clifford-valued recurrent neural networks with mixed time-varying delays[J]. Applied Mathematics and Mechanics,2017,38(5): 513-525.(in Chinese))
    [4] ZHANG R M, ZENG D Q, ZHONG S M. Novel master-slave synchronization criteria of chaotic Lur’e systems with time delays using sampled-data control[J]. Journal of The Franklin Institute,2017,354(12): 4930-4954.
    [5] LEE T, PARK J H, KWON O M, et al. Stochastic sampled-data control for state estimation of time-varying delayed neural networks[J]. Neural Networks,2013,46(5): 99-108.
    [6] ZENG D Q, ZHANG R M, ZHONG S M, et al. Novel Lebesgue-integral-based approach to improved results for neural networks with additive time-varying delay components[J]. Journal of The Franklin Institute,2017,354(16): 7543-7565.
    [7] SHI K B, LIU X Z, TANG Y Y, et al. Some novel approaches on state estimation of delayed neural networks[J].Information Sciences,2016,372: 313-331.
    [8] RATNAVELU K, MANIKANDAN M, BALASUBRAMANIAM P. Design of state estimator for BAM fuzzy cellular neural networks with leakage and unbounded distributed delays[J].Information Sciences,2017,397: 91-109.
    [9] ALI M S, SARAVANAN S, ARIK S. Finite-time H state estimation for switched neural networks with time-varying delays[J].Neurocomputing,2016,207: 580-589.
    [10] LIU Y C, WANG T, CHEN M S, et al. Dissipativity-based state estimation of delayed static neural networks[J]. Neurocomputing,2017,247: 137-143.
    [11] XIAO J Y, LI Y T, ZHONG S M, et al. Extended dissipative state estimation for memristive neural networks with time-varying delay[J]. ISA Transactions,2016,64: 113-128.
    [12] WANG Z S, WANG J D, WU Y M. State estimation for recurrent neural networks with unknown delays: a robust analysis approach[J]. Neurocomputing,2017,227: 29-36.
    [13] ZHONG M Y, HAN Q L. Fault-tolerant master-slave synchronization for Lur’e systems using time-delay feedback control[J]. IEEE Transactions on Circuits and Systems,2009,56(7): 1391-1404.
    [14] LU J Q, CAO J D, HO D W C. Adaptive stabilization and synchronization for chaotic Lur’e systems with time-varying delay[J]. IEEE Transactions on Circuits and Systems,2008,55(5): 1347-1356.
    [15] LIU Y J, LEE S M. Synchronization criteria of chaotic Lur’e systems with delayed feedback PD control[J]. Neurocomputing,2016,189(37): 66-71.
    [16] LIU Y J, GUO B Z, PARK J H, et al. Nonfragile exponential synchronization of delayed complex dynamical networks with memory sampled-data control[J]. IEEE Transactions on Neural Networks and Learning Systems,2018,29(1): 118-128.
    [17] LI Q, SHEN B, WANG Z D, et al. A sampled-data approach to distributed H resilient state estimation for a class of nonlinear time-delay systems over sensor networks[J]. Journal of The Franklin Institute,2017,354(15): 7139-7157.
    [18] RAKKIYAPPAN R, SAKTHIVEL N, PARK J H, et al. Sampled-data state estimation for Markovian jumping fuzzy cellular neural networks with mode-dependent probabilistic time-varying delays[J]. Applied Mathematics and Computation,2013,221(9): 741-769.
    [19] ZHANG R M, ZENG D Q, ZHONG S M, et al. Event-triggered sampling control for stability and stabilization of memristive neural networks with communication delays[J].Applied Mathematics and Computation,2017,310: 57-74.
    [20] ANBUVITHYA R, MATHIYALAGAN K, SAKTHIVEL R, et al. Sampled-data state estimation for genetic regulatory networks with time-varying delays[J].Neurocomputing,2015,151: 737-744.
    [21] ALI M S, GUNASEKARAN N, ZHU Q. State estimation of T-S fuzzy delayed neural networks with Markovian jumping parameters using sampled-data control[J].Fuzzy Sets & Systems,2017,306: 87-104.
    [22] LIU Y J, LEE S M. Sampled-data synchronization of chaotic Lur’e systems with stochastic sampling[J]. Circuits, Systems, and Signal Processing,2015,34(12): 3725-3739.
    [23] SHI K B, LIU X Z, ZHU H, et al. On designing stochastic sampled-data controller for master-slave synchronization of chaotic Lur’e system via a noel integral inequality[J]. Communications in Nonlinear Science and Numerical Simulation,2016,34: 165-184.
    [24] GAO H, WU J, SHI P. Robust sampled-data H control with stochastic sampling[J].Automatica,2009,45(7): 1729-1736.
    [25] SHEN B, WANG Z D, LIU X H. Sampled-data synchronization control of dynamical networks with stochastic sampling[J]. IEEE Transactions on Automatic Control,2012,57(10): 2644-2650.
    [26] RAKKIYAPPAN R, DHARANI S, ZHU Q X. Synchronization of reaction-diffusion neural networks with time-varying delays via stochastic sampled-data controller[J]. Nonlinear Dynamics,2015,79(1): 485-500.
    [27] LEE T H, PARK J H, LEE S M, et al. Robust synchronization of chaotic systems with randomly occurring uncertainties via stochastic sampled-data control[J]. International Journal of Control,2013,86(1): 107-119.
    [28] WU Z G, SHI P, SU H, et al. Stochastic synchronization of Markovian jump neural networks with time-varying delay using sampled data[J]. IEEE Transactions on Cybernetics,2013,43(6): 1796-1806.
    [29] YANG F S, ZHANG H G, WANG Y C. An enhanced input-delay approach to sampled-data stabilization of T-S fuzzy systems via mixed convex combination[J].Nonlinear Dynamics,2014,75(3): 501-512.
    [30] BOYD S, GHAOUI L E, FERON E, et al.Linear Matrix Inequalities in System and Control Theory [M]. USA: Society for Industrial and Applied Mathematics, 1994.
  • 加载中
计量
  • 文章访问数:  1203
  • HTML全文浏览量:  181
  • PDF下载量:  818
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-31
  • 修回日期:  2017-11-02
  • 刊出日期:  2018-07-15

目录

    /

    返回文章
    返回