留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于广义弹性理论的微梁固有频率及模态的尺寸效应

沈暗明 陈锐 杜丘美

沈暗明, 陈锐, 杜丘美. 基于广义弹性理论的微梁固有频率及模态的尺寸效应[J]. 应用数学和力学, 2018, 39(9): 999-1008. doi: 10.21656/1000-0887.380301
引用本文: 沈暗明, 陈锐, 杜丘美. 基于广义弹性理论的微梁固有频率及模态的尺寸效应[J]. 应用数学和力学, 2018, 39(9): 999-1008. doi: 10.21656/1000-0887.380301
SHEN Anming, CHEN Rui, DU Qiumei. Scale Effects on Natural Frequencies and Vibration Modes of Micro Cantilever Beams Based on Generalized Elasticity[J]. Applied Mathematics and Mechanics, 2018, 39(9): 999-1008. doi: 10.21656/1000-0887.380301
Citation: SHEN Anming, CHEN Rui, DU Qiumei. Scale Effects on Natural Frequencies and Vibration Modes of Micro Cantilever Beams Based on Generalized Elasticity[J]. Applied Mathematics and Mechanics, 2018, 39(9): 999-1008. doi: 10.21656/1000-0887.380301

基于广义弹性理论的微梁固有频率及模态的尺寸效应

doi: 10.21656/1000-0887.380301
基金项目: 国家自然科学基金(51505044)
详细信息
    作者简介:

    沈暗明(1991—),男,硕士(通讯作者. E-mail: sam@cqu.edu.cn).

  • 中图分类号: O343

Scale Effects on Natural Frequencies and Vibration Modes of Micro Cantilever Beams Based on Generalized Elasticity

Funds: The National Natural Science Foundation of China(51505044)
  • 摘要: 经典弹性理论在近代工程技术中得到广泛应用,但其本构关系中不包含任何与尺寸相关的参数,因此不适用于微观结构,不能预测和解释尺寸效应.广义弹性理论增加了偶应力及其对应的曲率张量,完善了对小变形的几何描述,适用于微结构的尺寸效应研究.该文采用广义弹性理论,并结合Hamilton变分原理推导了悬臂微梁的振动微分方程,对微梁的固有频率及其模态进行了分析.结果表明,随着微梁厚度的不断减小,固有频率的尺寸效应与其对应的模态密切相关.扭转和弯曲模态包含了旋转变形,其对应的固有频率显著提高,表现出了显著的尺寸效应;而拉压模态不涉及旋转变形,固有频率未产生明显变化,没有尺寸效应.
  • [1] 吴家龙. 弹性力学[M]. 北京: 高等教育出版社, 2010.(WU Jialong. Elasticity [M]. Beijing: Higher Education Press, 2010.(in Chinese))
    [2] FLECK N A, MULLER G M, ASHBY M F, et al. Strain gradient plasticity: theory and experiment[J]. Acta Metallurgica et Materialia,1994,42(2): 475-487.
    [3] STLKEN J S, EVANS A G. A microbend test method for measuring the plasticity length scale[J]. Acta Materialia,1998,46(14): 5109-5115.
    [4] LAM D C C, YANG F, CHONG A C M, et al. Experiments and theory in strain gradient elasticity[J]. Journal of the Mechanics and Physics of Solids,2003,51(8): 1477-1508.
    [5] CHEN X X, NGAN A H W. Specimen size and grain size effects on tensile strength of Ag microwires[J]. Scripta Materialia,2011,64(8):717-720.
    [6] COSSERAT E, COSSERAT F. Théorie des Corps Déformatbles [M]. Paris: Hermann & Fils, 1909.
    [7] MINDLIN R D, TIERSTEN H F. Effects of couple-stresses in linear elasticity[J]. Archive for Rational Mechanics & Analysis,1962,11(1): 415-448.
    [8] TOUPIN R A. Elastic materials with couple-stresses[J]. Archive for Rational Mechanics & Analysis,1962,11(1): 385-414.
    [9] KOITER W T. Couple-stresses in the theory of elasticity, I and II[J]. Koninklijke Nederlandse Akademie van Weteschappen: Series B,1964,67: 17-44.
    [10] FLECK N A, HUTCHINSON J W. A phenomenological theory for strain gradient effects in plasticity[J]. Journal of the Mechanics and Physics of Solids,1993,41(12): 1825-1857.
    [11] FLECK N A, HUTCHINSON J W. Strain gradient plasticity[J]. Advances in Applied Mechanics,1997,33: 295-361.
    [12] YANG F, CHONG A C M, LAM D C C, et al. Couple stress based strain gradient theory for elasticity[J]. International Journal of Solids and Structures,2002,39(10): 2731-2743.
    [13] CHEN S H, WANG T C. A new hardening law for strain gradient plasticity[J]. Acta Materialia,2000,48(16): 3997-4005.
    [14] 黄克智, 邱信明, 姜汉卿. 应变梯度理论的新进展(一): 偶应力理论和SG理论[J]. 机械强度, 1999,21(2): 81-87.(HUANG Kezhi, QIU Xinming, JIANG Hanqing. Recent advances in strain gradient plasticity, I: couple stress theory and SG theory[J]. Journal of Mechanical Strength,1999,21(2): 81-87.(in Chinese))
    [15] LIU Z F, FU Z. Scale effects of the stress symmetry in generalized elasticity[J]. International Journal of Aerospace and Lightweight Structures,2012,2(4): 509-521.
    [16] 颜世军, 刘占芳. 修正的偶应力线弹性理论及广义线弹性体的有限元方法[J]. 固体力学学报, 2012,33(3): 279-286.(YAN Shijun, LIU Zhanfang. A modified couple stress linear elasticity and finite element method for generalized elastic bodies[J]. Chinese Journal of Solid Mechanics,2012,33(3): 279-286.(in Chinese))
    [17] 张威, 张大成, 王阳元. MEMS概况及发展趋势[J]. 微纳电子技术, 2002,39(1): 22-27. (ZHANG Wei, ZHANG Dacheng, WANG Yangyuan. Survey and development of MEMS[J]. Micronanoelectronic Technology,2002,39(1): 22-27.(in Chinese))
    [18] 孙圣和. 现代传感器发展方向[J]. 电子测量与仪器学报, 2009,23(1): 1-10. (SUN Shenghe. Development trend of modern sensor[J]. Journal of Electronic Measurement and Instrument,2009,23(1): 1-10.(in Chinese))
    [19] PARK S K, GAO X L. Bernoulli Euler beam model based on a modified couple stress theory[J]. Journal of Micromechanics and Microengineering,2006,16(11): 2355-2359.
    [20] MA H M, GAO X L, REDDY J N. A microstructure-dependent Timoshenko beam model based on a modified couple stress theory[J]. Journal of the Mechanics and Physics of Solids,2008,56(12): 3379-3391.
    [21] 康新, 席占稳. 基于Cosserat理论的微梁振动特性的尺度效应[J]. 机械强度, 2007,29(l): l-4.(KANG Xin, XI Zhanwen. Size effect on the dynamic characteristic of a micro beam based on Cosserat theory[J]. Journal of Mechanical Strength,2007,29(l): l-4.(in Chinese))
    [22] 徐晓建, 邓子辰. 多层简化应变梯度Timoshenko梁的变分原理分析[J]. 应用数学和力学, 2016,37(3): 235-244.(XU Xiaojian, DENG Zichen. The variational principle for multi-layer Timoshenko beam systems based on the simplified strain gradient theory[J]. Applied Mathematics and Mechanics,2016,37(3): 235-244.(in Chinese))
    [23] 铁摩辛柯 S P, 古地尔 J N. 弹性理论[M]. 徐芝纶, 译. 3版. 北京: 高等教育出版社, 2013: 267-343.(TIMOSHENKO S P, GOODIER J N. Theory of Elasticity [M]. XU Zhilun, transl. 3rd ed. Beijing: Higher Education Press, 2013: 267-343.(Chinese version))
  • 加载中
计量
  • 文章访问数:  1494
  • HTML全文浏览量:  182
  • PDF下载量:  805
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-05
  • 修回日期:  2018-01-09
  • 刊出日期:  2018-09-15

目录

    /

    返回文章
    返回