留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

谱元法求解Helmholtz方程透射特征值问题

戴海 潘文峰

戴海, 潘文峰. 谱元法求解Helmholtz方程透射特征值问题[J]. 应用数学和力学, 2018, 39(7): 833-840. doi: 10.21656/1000-0887.380327
引用本文: 戴海, 潘文峰. 谱元法求解Helmholtz方程透射特征值问题[J]. 应用数学和力学, 2018, 39(7): 833-840. doi: 10.21656/1000-0887.380327
DAI Hai, PAN Wenfeng. A Spectral Element Method for Transmission Eigenvalue Problems of the Helmholtz Equation[J]. Applied Mathematics and Mechanics, 2018, 39(7): 833-840. doi: 10.21656/1000-0887.380327
Citation: DAI Hai, PAN Wenfeng. A Spectral Element Method for Transmission Eigenvalue Problems of the Helmholtz Equation[J]. Applied Mathematics and Mechanics, 2018, 39(7): 833-840. doi: 10.21656/1000-0887.380327

谱元法求解Helmholtz方程透射特征值问题

doi: 10.21656/1000-0887.380327
基金项目: 中央高校基本科研业务费(2017IB014)
详细信息
    作者简介:

    戴海(1992—),男,硕士生(通讯作者. E-mail: 1670112042@qq.com);潘文峰(1964—),男,教授(E-mail: pan@mail.whut.edu).

  • 中图分类号: O175.2

A Spectral Element Method for Transmission Eigenvalue Problems of the Helmholtz Equation

  • 摘要: 研究了Helmholtz方程透射特征值问题,提出一种Chebyshev谱元法求解,该方法兼具了有限元法处理边界及区域的灵活性和谱方法的快速收敛特性.运用加权余量原理,得到了Chebyshev谱元法用于透射特征值问题的基本理论以及数学公式,将原问题转化为二次特征值问题.最后通过数值实验算例验证了Chebyshev谱元法的有效性.
  • [1] COLTOND, MONK P. The inverse scattering problem for time-hormonic acoustic waves in an inhomogeneous medium[J]. The Quarterly Journal of Mechanics and Applied Mathematics,1988,26(1): 323-350.
    [2] COLTON D, PAIVARINTA L, SYLVESTER J. The interior transmission problem[J]. Inverse Problems & Imaging,2017,1(1): 13-28.
    [3] CAKONI F, COLTON D, HADDARH. On the determination of Dirichlet or transmission eigenvalues from far field data[J]. Comptes Rendus Mathematique,2012,348(7): 379-383.
    [4] CAKONI F, KRESS R. A boundary integral equation method for the transmission eigenvalue problem[J]. Applicable Analysis,2016,96(1): 23-38.
    [5] COLTON D, MONK P, SUN J. Analytical and computational methods for transmission eigenvalues[J]. Inverse Problems,2010,26(26): 045011.
    [6] JI X, SUN J, TURNER T. Algorithm 922: a mixed finite element method for Helmholtz transmission eigenvalues[J]. ACM Transactions on Mathematical Software,2012,38(4): 1-8.
    [7] JI X, SUN J, XIE H. A multigrid method for Helmholtz transmission eigenvalue problems[J]. Journal of Scientific Computing,2014,60(2): 276-294.
    [8] SUN J. Iterative methods for transmission eigenvalues[J]. Society for Industrial and Applied Mathematics,2011,49(49): 1860-1874.
    [9] AN J, SHEN J. Spectral approximation to a transmission eigenvalue problem and its applications to an inverse problem[J]. Computers & Mathematics With Applications,2015,69(10): 1132-1143.
    [10] ORSZAG S A. Spectral methods for problems in complex geometries[J]. Journal of Computational Physics,1980,37(1): 70-92.
    [11] PATERA A T. A spectral element method for fluid dynamics: laminar flow in a channel expansion[J]. Journal of Computational Physics,1984,54(3): 468-488.
    [12] 容志建, 许传炬. 基于张量乘积的快速谱元算法[J]. 数学研究, 2008,41(3): 264-271.(RONG Zhijian, XU Chuanju. Tensor product based fast spectral element solves[J]. Journal of Mathematical Study,2008,41(3): 264-271.(in Chinese))
    [13] 林伟军. 弹性波传播模拟的Chebyshev谱元法[J]. 声学学报, 2007,32(6): 525-533.(LIN Weijun. A Chebyshev spectral element method for elastic wave modeling[J]. Acta Acustica,2007,32(6): 525-533.(in Chinese))
    [14] 周欣, 李铁香. Helmholtz方程透射特征值问题的数值算法[J]. 应用数学进展, 2016,5(4): 683-694.(ZHOU Xin, LI Tiexiang. Numerical solution of transmission eigenvalue problems of Helmholtz equation[J]. Advances in Applied Mathematics,2016,5(4): 683-694. (in Chinese))
    [15] 朱晓钢, 聂玉峰. 变系数分数阶对流扩散方程的一种算子矩阵方法[J]. 应用数学和力学, 2018,39(1): 104-112.(ZHU Xiaogang, NIE Yufeng. An operational matrix method for fractional advection-diffusion equations with variable coefficients[J]. Applied Mathematics and Mechanics,2018,39(1): 104-112.(in Chinese))
    [16] 朱昌允, 秦国良, 徐忠. Chebyshev谱元方法结合并行算法求解三维区域的Helmholtz方程[J]. 应用力学学报, 2012,29(3): 247-251.(ZHU Changyun, QIN Guoliang, XU Zhong. Parallel Chebyshev spectral element method for Helmholtz equation in 3D domain[J]. Chinese Journal of Applied Mechanics,2012,29(3): 247-251.(in Chinese))
  • 加载中
计量
  • 文章访问数:  1517
  • HTML全文浏览量:  284
  • PDF下载量:  617
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-18
  • 修回日期:  2018-01-18
  • 刊出日期:  2018-07-15

目录

    /

    返回文章
    返回