[1] |
杨小平, 隋刚. 碳纤维复合材料在新能源产业中的应用进展[J]. 新材料产业, 2012(2): 20-24.(YANG Xiaoping, SUI Gang. Application of carbon fiber composite materials in new energy industry[J]. Advanced Materials Industry,2012(2): 20-24.(in Chinese))
|
[2] |
冯美斌. 汽车轻量化技术中新材料的发展及应用[J]. 汽车工程, 2006,28(3): 213-220.(FENG Meibin. Development and application of new materials in automotive lightweighting technologies[J]. Automotive Engineering,2006,28(3): 213-220.(in Chinese))
|
[3] |
PARPINELLI R S, LOPES H S, FREITAS A A. Data mining with an ant colony optimization algorithm[J]. IEEE Transactions on Evolutionary Computation,2 002,6(4): 321-332.
|
[4] |
肖书敏, 闫云聚, 姜波澜. 基于小波神经网络方法的桥梁结构损伤识别研究[J]. 应用数学和力学, 2016,37(2): 149-159.(XIAO Shumin, YAN Yunju, JIANG Bolan. Damage identification for bridge structures based on the wavelet neural network method[J]. Applied Mathematics and Mechanics,2016,37(2): 149-159.(in Chinese))
|
[5] |
DILEEP P N, KUMAR RR, RAO G V. A neural-genetic algorithm approach for evaluation of notched strength of laminate[J]. Journal of the Institution of Engineers(India),2 002.
|
[6] |
刘振国, 胡杰, 胡龙. 基于遗传算法的层合板分级铺层全局优化[J]. 北京航空航天大学学报, 2013,39(4): 478-483.(LIU Zhenguo, HU Jie, HU Long. Global optimization of classified composite laminated structures based on genetic algorithms[J]. Journal of Beijing University of Aeronautics and Astronautics,2013,39(4): 478-483.(in Chinese))
|
[7] |
RAO A R M, LAKSHMI K. Optimal design of stiffened laminate composite cylinder using a hybrid SFL algorithm[J].Journal of Composite Materials,2012,46(24): 3031-3055.
|
[8] |
SALAMAT A R, RAIESINEZHAD M. Optimum design ofantisymmetric cross-ply and angle-ply laminate with bees algorithm[Z]. 2012.
|
[9] |
YAO Y, WANG T, GONG Y, et al. Development of a carbon fiber reinforced composite chassis longitudinal arm[J]. Science of Advanced Materials,2016,8(11): 2133-2141.
|
[10] |
龚友坤, 王韬, 姚远, 等. 汽车底盘碳纤维后纵臂成形实验与分析[J]. 汽车工程, 2016,38(2): 248-251.(GONG Youkun, WANG Tao, YAO Yuan, et al. Forming experiment and analysis of vehicle rear longitudinal arm of carbon fiber reinforced composite[J]. Automotive Engineering,2016,38(2): 248-251.(in Chinese))
|
[11] |
ROKACH L, MAIMON O. Data Mining With Decision Trees: Theory and Applications [M]. Singapore: World Scientific Publishing Company, 2008.
|
[12] |
KIM Y, PERRIG A, TSUDIK G. Tree-based group key agreement[J]. Acm Transactions on Information & System Security,2004,7(1): 60-96.
|
[13] |
LIANG X, QU F, YANG Y, et al. An improved ID3 decision tree algorithm based on attribute weighted[C]// International Conference on Civil, Materials and Environmental Sciences.Paris, France, 2015.
|
[14] |
LU G, KRISHNAMACHARI B, RAGHAVENDRA C S. An adaptive energy-efficient and low-latency MAC for tree-based data gathering in sensor networks: research articles[J]. Wireless Communications & Mobile Computing,2007,7(7): 863-875.
|
[15] |
QUINLAN J R. Induction on decision tree[J]. Machine Learning,1986,1(1): 81-106.
|
[16] |
CHEN T, GUESTRIN C. XGBoost: a scalable tree boosting system[C]// ACM Sigkdd International Conference on Knowledge Discovery and Data Mining. San Francisco, California, USA, 2016: 785-794.
|
[17] |
VINAYAK R K, GILAD-BACHRACH R. DART: Dropouts meet multiple additive regression trees[C]// Proceedings of the Eighteenth International Conference on Artificial Intelligence and Statistics. Vol38. San Diego, California, USA, 2015: 489-497.
|
[18] |
SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout: a simple way to prevent neural networks fromoverfitting[J]. Journal of Machine Learning Research,2014,15(1): 1929-1958.
|
[19] |
GUYON I, ELISSEEFF A. An introduction to variable and feature selection[J]. Journal of Machine Learning Research,2 003,3(6): 1157-1182.
|
[20] |
ERNST D, GEURTS P, WEHENKEL L. Tree-based batch mode reinforcement learning[J]. Journal of Machine Learning Research,2005,6(2): 503-556.
|
[21] |
史忠植. 知识发现[M]. 北京: 清华大学出版社, 2011.(SHI Zhongzhi. Knowledge Discovery [M]. Beijing: Tsinghua University Press, 2011.(in Chinese))
|