留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

矩形容器中黏性流体的横波谐振:格子Boltzmann浸没边界方法

哈比特 M A 吴锤结

哈比特 M A, 吴锤结. 矩形容器中黏性流体的横波谐振:格子Boltzmann浸没边界方法[J]. 应用数学和力学, 2018, 39(4): 371-394. doi: 10.21656/1000-0887.390040
引用本文: 哈比特 M A, 吴锤结. 矩形容器中黏性流体的横波谐振:格子Boltzmann浸没边界方法[J]. 应用数学和力学, 2018, 39(4): 371-394. doi: 10.21656/1000-0887.390040
HABTE Mussie A, WU Chuijie. Transverse Harmonic Oscillation of Rectangular Container With Viscous Fluid: a Lattice BoltzmannImmersed Boundary Approach[J]. Applied Mathematics and Mechanics, 2018, 39(4): 371-394. doi: 10.21656/1000-0887.390040
Citation: HABTE Mussie A, WU Chuijie. Transverse Harmonic Oscillation of Rectangular Container With Viscous Fluid: a Lattice BoltzmannImmersed Boundary Approach[J]. Applied Mathematics and Mechanics, 2018, 39(4): 371-394. doi: 10.21656/1000-0887.390040

矩形容器中黏性流体的横波谐振:格子Boltzmann浸没边界方法

doi: 10.21656/1000-0887.390040
基金项目: 国家自然科学基金(11372068)
详细信息
  • 中图分类号: O35

Transverse Harmonic Oscillation of Rectangular Container With Viscous Fluid: a Lattice BoltzmannImmersed Boundary Approach

Funds: The National Natural Science Foundation of China (11372068); the National Key Basic Research and Development Program of China (2014CB744104)
  • 摘要: 将三维格子Boltzmann法(LBM)与浸没边界法(IBM)相结合,研究弹性矩形容器中黏性流体的横波谐振所引起的流动物理特性.提出了一个半微观表达式来计算边界节点处的流体受力.基于薄板弹性变形理论,使用解析变形解法来计算边界所经历的位移.基于该方法的数值模拟结果与固定边界的理论预测结果一致.采用振荡边界模拟展现了与理论预期相符合的流动模式.
  • [1] KOZLOV V, KOZLOV N, SCHIPITSYN V. Steady flows in an oscillating deformable container: effect of the dimensionless frequency[J]. Physical Review Fluids, 2017,2(9): 094501.
    [2] MIRAS T, SCHOTTE J-S, OHAYON R. Liquid sloshing damping in an elastic container[J]. Journal of Applied Mechanics,2012,79(1): 010902.
    [3] LOPEZ D, GUAZZELLI E. Inertial effects on fibers settling in a vortical flow[J]. Physical Review Fluids,2017,2(2): 024306.
    [4] SAURET A, CEBRON D, LE BARS M, et al. Fluid flows in a librating cylinder[J]. Physics of Fluids,2012,24(2): 026603.
    [5] HABTE M A, WU Chuijie. Influence of wall motion on particle sedimentation using hybrid LB-IBM scheme[J]. Science China : Physics, Mechanics & Astronomy,2017,60(3): 034711.
    [6] J KAY J M, NEDDERMAN R M. Fluid Mechanics and Transfer Processes [M]. Cambridge, New York: Cambridge University Press, 1985.
    [7] SCHLICHTING H, GERSTEN K, KRAUSE E, et al. Boundary-Layer Theory [M]. Vol7. Springer, 1955.
    [8] BUXTON G A, VERBERG R, JASNOW D, et al. Newtonian fluid meets an elastic solid: coupling lattice Boltzmann and lattice-spring models[J]. Physical Review E,2005,71(5): 056707.
    [9] WU Z, MA X. Dynamic analysis of submerged microscale plates: the effects of acoustic radiation and viscous dissipation[J]. Proceedings: Mathematical, Physical, and Engineering Sciences,2016,472(2187): 20150728.
    [10] AURELI M, PORFIRI M. Low frequency and large amplitude oscillations of cantilevers in viscous fluids[J]. Applied Physics Letters,2010,96(16): 164102.
    [11] FANG H, WANG Z, LIN Z, et al. Lattice Boltzmann method for simulating the viscous flow in large distensible blood vessels[J]. Physical Review E,2002,65(5): 051925.
    [12] DESCOVICH X, PONTRELLI G, MELCHIONNA S, et al. Modeling fluid flows in distensible tubes for applications in hemodynamics[J]. International Journal of Modern Physics C,2013,24(5): 1350030.
    [13] DOCTORS G M. Towards patient-specific modelling of cerebral blood flow using lattice-Boltzmann methods[D]. Ph D Thesis. University of London, 2011.
    [14] MOUNTRAKIS L, LORENZ E, HOEKSTRA A. Revisiting the use of the immersed-boundary lattice-Boltzmann method for simulations of suspended particles[J]. Physical Review E,2017,96(1): 013302.
    [15] YAN G, LI T, YIN X. Lattice Boltzmann model for elastic thin plate with small deflection[J]. Computers & Mathematics With Applications,2012,63(8): 1305-1318.
    [16] ARENAS J P. On the vibration analysis of rectangular clamped plates using the virtual work principle[J]. Journal of Sound and Vibration,2003,266(4): 912-918.
    [17] GORMAN D. Free-vibration analysis of rectangular plates with clamped-simply supported edge conditions by the method of superposition[J].Journal of Applied Mechanics,1977,44(4): 743-749.
    [18] SUNG C-C, JAN C. Active control of structurally radiated sound from plates[J]. The Journal of the Acoustical Society of America,1997,102(1): 370-381.
    [19] LADD A, VERBERG R. Lattice-Boltzmann simulations of particle-fluid suspensions[J]. Journal of Statistical Physics,2001,104(5/6): 1191-1251.
    [20] LADD A J. Numerical simulations of particulate suspensions via a discretized Boltzmann equation, part 1: theoretical foundation[J]. Journal of Fluid Mechanics,1994,271: 285-309.
    [21] QIAN Y, D'HUMIRES D, LALLEMAND P. Lattice BGK models for Navier-Stokes equation[J]. Europhysics Letters,1992,17(6): 479.
    [22] LADD A J. Lattice-Boltzmann methods for suspensions of solid particles[J]. Molecular Physics ,2015,113(17/18): 2531-2537.
    [23] LADD A J. Numerical simulations of particulate suspensions via a discretized Boltzmann equation,part 2: numerical results[J]. Journal of Fluid Mechanics,1994,271: 311-339.
    [24] NIU X, SHU C, CHEW Y, et al. A momentum exchange-based immersed boundary-lattice Boltzmann method for simulating incompressible viscous flows[J].Physics Letters A,2006,354(3): 173-182.
    [25] SQUIRES K D, EATON J K. Particle response and turbulence modification in isotropic turbulence[J]. Physics of Fluids A: Fluid Dynamics,1990,2(7): 1191-1203.
    [26] CAI S-G, OUAHSINE A, FAVIER J, et al. Moving immersed boundary method[J]. International Journal for Numerical Methods in Fluids,2017,85(5): 288-323.
    [27] DI FELICE R. The voidage function for fluid-particle interaction systems[J]. International Journal of Multiphase Flow,1994,20(1): 153-159.
    [28] BROWN P P, LAWLER D F. Sphere drag and settling velocity revisited[J]. Journal of Environmental Engineering,2003,129(3): 222-231.
    [29] ESTEGHAMATIAN A, RAHMANI M, WACHS A. Numerical models for fluid-grains interactions: opportunities and limitations[C]// European Physical Journal Web of Conferences.Vol140. 2017: 09013.
    [30] SUNGKORN R, DERKSEN J. Simulations of dilute sedimenting suspensions at finite-particle reynolds numbers[J]. Physics of Fluids,2012,24(12): 123303.
    [31] REIDER M B, STERLING J D. Accuracy of discrete-velocity BGK models for the simulation of the incompressible Navier-Stokes equations[J].Computers & Fluids,1995,24(4): 459-467.
    [32] MAIER R S, BERNARD R S, GRUNAU D W. Boundary conditions for the lattice Boltzmann method[J]. Physics of Fluids,1996,8(7): 1788-1801.
    [33] ZHANG W, SHI B, WANG Y. 14-velocity and 18-velocity multiple-relaxation-time lattice Boltzmann models for three-dimensional incompressible flows[J]. Computers & Mathematics With Applications,2015,69(9): 997-1019.
    [34] HOFEMEIER P, SZNITMAN J. Revisiting pulmonary acinar particle transport: convection, sedimentation, diffusion and their interplay[J].Journal of Applied Physiology,2015,118(11): 1375-1385.
    [35] SHI Y, SADER J E. Lattice Boltzmann method for oscillatory stokes flow with applications to micro-and nanodevices[J]. Physical Review E,2010,81(3): 036706.
    [36] SON S W, YOON H S, JEONG H K, et al. Discrete lattice effect of various forcing methods of body force on immersed boundary-lattice Boltzmann method[J].Journal of Mechanical Science and Technology,2013,27(2): 429-441.
    [37] LIBERSKY L D, PETSCHEK A G, CARNEY T C, et al. High strain Lagrangian hydrodynamics: a three dimensional SPH code for dynamic material response[J]. Journal of Computational Physics,1993,109(1): 67-75.
  • 加载中
计量
  • 文章访问数:  1402
  • HTML全文浏览量:  217
  • PDF下载量:  700
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-24
  • 修回日期:  2018-03-17
  • 刊出日期:  2018-04-15

目录

    /

    返回文章
    返回