[1] |
KOZLOV V, KOZLOV N, SCHIPITSYN V. Steady flows in an oscillating deformable container: effect of the dimensionless frequency[J]. Physical Review Fluids, 2017,2(9): 094501.
|
[2] |
MIRAS T, SCHOTTE J-S, OHAYON R. Liquid sloshing damping in an elastic container[J]. Journal of Applied Mechanics,2012,79(1): 010902.
|
[3] |
LOPEZ D, GUAZZELLI E. Inertial effects on fibers settling in a vortical flow[J]. Physical Review Fluids,2017,2(2): 024306.
|
[4] |
SAURET A, CEBRON D, LE BARS M, et al. Fluid flows in a librating cylinder[J]. Physics of Fluids,2012,24(2): 026603.
|
[5] |
HABTE M A, WU Chuijie. Influence of wall motion on particle sedimentation using hybrid LB-IBM scheme[J]. Science China : Physics, Mechanics & Astronomy,2017,60(3): 034711.
|
[6] |
J KAY J M, NEDDERMAN R M. Fluid Mechanics and Transfer Processes [M]. Cambridge, New York: Cambridge University Press, 1985.
|
[7] |
SCHLICHTING H, GERSTEN K, KRAUSE E, et al. Boundary-Layer Theory [M]. Vol7. Springer, 1955.
|
[8] |
BUXTON G A, VERBERG R, JASNOW D, et al. Newtonian fluid meets an elastic solid: coupling lattice Boltzmann and lattice-spring models[J]. Physical Review E,2005,71(5): 056707.
|
[9] |
WU Z, MA X. Dynamic analysis of submerged microscale plates: the effects of acoustic radiation and viscous dissipation[J]. Proceedings: Mathematical, Physical, and Engineering Sciences,2016,472(2187): 20150728.
|
[10] |
AURELI M, PORFIRI M. Low frequency and large amplitude oscillations of cantilevers in viscous fluids[J]. Applied Physics Letters,2010,96(16): 164102.
|
[11] |
FANG H, WANG Z, LIN Z, et al. Lattice Boltzmann method for simulating the viscous flow in large distensible blood vessels[J]. Physical Review E,2002,65(5): 051925.
|
[12] |
DESCOVICH X, PONTRELLI G, MELCHIONNA S, et al. Modeling fluid flows in distensible tubes for applications in hemodynamics[J]. International Journal of Modern Physics C,2013,24(5): 1350030.
|
[13] |
DOCTORS G M. Towards patient-specific modelling of cerebral blood flow using lattice-Boltzmann methods[D]. Ph D Thesis. University of London, 2011.
|
[14] |
MOUNTRAKIS L, LORENZ E, HOEKSTRA A. Revisiting the use of the immersed-boundary lattice-Boltzmann method for simulations of suspended particles[J]. Physical Review E,2017,96(1): 013302.
|
[15] |
YAN G, LI T, YIN X. Lattice Boltzmann model for elastic thin plate with small deflection[J]. Computers & Mathematics With Applications,2012,63(8): 1305-1318.
|
[16] |
ARENAS J P. On the vibration analysis of rectangular clamped plates using the virtual work principle[J]. Journal of Sound and Vibration,2003,266(4): 912-918.
|
[17] |
GORMAN D. Free-vibration analysis of rectangular plates with clamped-simply supported edge conditions by the method of superposition[J].Journal of Applied Mechanics,1977,44(4): 743-749.
|
[18] |
SUNG C-C, JAN C. Active control of structurally radiated sound from plates[J]. The Journal of the Acoustical Society of America,1997,102(1): 370-381.
|
[19] |
LADD A, VERBERG R. Lattice-Boltzmann simulations of particle-fluid suspensions[J]. Journal of Statistical Physics,2001,104(5/6): 1191-1251.
|
[20] |
LADD A J. Numerical simulations of particulate suspensions via a discretized Boltzmann equation, part 1: theoretical foundation[J]. Journal of Fluid Mechanics,1994,271: 285-309.
|
[21] |
QIAN Y, D'HUMIRES D, LALLEMAND P. Lattice BGK models for Navier-Stokes equation[J]. Europhysics Letters,1992,17(6): 479.
|
[22] |
LADD A J. Lattice-Boltzmann methods for suspensions of solid particles[J]. Molecular Physics ,2015,113(17/18): 2531-2537.
|
[23] |
LADD A J. Numerical simulations of particulate suspensions via a discretized Boltzmann equation,part 2: numerical results[J]. Journal of Fluid Mechanics,1994,271: 311-339.
|
[24] |
NIU X, SHU C, CHEW Y, et al. A momentum exchange-based immersed boundary-lattice Boltzmann method for simulating incompressible viscous flows[J].Physics Letters A,2006,354(3): 173-182.
|
[25] |
SQUIRES K D, EATON J K. Particle response and turbulence modification in isotropic turbulence[J]. Physics of Fluids A: Fluid Dynamics,1990,2(7): 1191-1203.
|
[26] |
CAI S-G, OUAHSINE A, FAVIER J, et al. Moving immersed boundary method[J]. International Journal for Numerical Methods in Fluids,2017,85(5): 288-323.
|
[27] |
DI FELICE R. The voidage function for fluid-particle interaction systems[J]. International Journal of Multiphase Flow,1994,20(1): 153-159.
|
[28] |
BROWN P P, LAWLER D F. Sphere drag and settling velocity revisited[J]. Journal of Environmental Engineering,2003,129(3): 222-231.
|
[29] |
ESTEGHAMATIAN A, RAHMANI M, WACHS A. Numerical models for fluid-grains interactions: opportunities and limitations[C]// European Physical Journal Web of Conferences.Vol140. 2017: 09013.
|
[30] |
SUNGKORN R, DERKSEN J. Simulations of dilute sedimenting suspensions at finite-particle reynolds numbers[J]. Physics of Fluids,2012,24(12): 123303.
|
[31] |
REIDER M B, STERLING J D. Accuracy of discrete-velocity BGK models for the simulation of the incompressible Navier-Stokes equations[J].Computers & Fluids,1995,24(4): 459-467.
|
[32] |
MAIER R S, BERNARD R S, GRUNAU D W. Boundary conditions for the lattice Boltzmann method[J]. Physics of Fluids,1996,8(7): 1788-1801.
|
[33] |
ZHANG W, SHI B, WANG Y. 14-velocity and 18-velocity multiple-relaxation-time lattice Boltzmann models for three-dimensional incompressible flows[J]. Computers & Mathematics With Applications,2015,69(9): 997-1019.
|
[34] |
HOFEMEIER P, SZNITMAN J. Revisiting pulmonary acinar particle transport: convection, sedimentation, diffusion and their interplay[J].Journal of Applied Physiology,2015,118(11): 1375-1385.
|
[35] |
SHI Y, SADER J E. Lattice Boltzmann method for oscillatory stokes flow with applications to micro-and nanodevices[J]. Physical Review E,2010,81(3): 036706.
|
[36] |
SON S W, YOON H S, JEONG H K, et al. Discrete lattice effect of various forcing methods of body force on immersed boundary-lattice Boltzmann method[J].Journal of Mechanical Science and Technology,2013,27(2): 429-441.
|
[37] |
LIBERSKY L D, PETSCHEK A G, CARNEY T C, et al. High strain Lagrangian hydrodynamics: a three dimensional SPH code for dynamic material response[J]. Journal of Computational Physics,1993,109(1): 67-75.
|