留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

求解周期性分段线性系统动态响应的高效数值方法

何冬东 高强 钟万勰

何冬东, 高强, 钟万勰. 求解周期性分段线性系统动态响应的高效数值方法[J]. 应用数学和力学, 2018, 39(7): 737-749. doi: 10.21656/1000-0887.390055
引用本文: 何冬东, 高强, 钟万勰. 求解周期性分段线性系统动态响应的高效数值方法[J]. 应用数学和力学, 2018, 39(7): 737-749. doi: 10.21656/1000-0887.390055
HE Dongdong, GAO Qiang, ZHONG Wanxie. An Efficient Numerical Method for Computing Dynamic Responses of Periodic Piecewise Linear Systems[J]. Applied Mathematics and Mechanics, 2018, 39(7): 737-749. doi: 10.21656/1000-0887.390055
Citation: HE Dongdong, GAO Qiang, ZHONG Wanxie. An Efficient Numerical Method for Computing Dynamic Responses of Periodic Piecewise Linear Systems[J]. Applied Mathematics and Mechanics, 2018, 39(7): 737-749. doi: 10.21656/1000-0887.390055

求解周期性分段线性系统动态响应的高效数值方法

doi: 10.21656/1000-0887.390055
基金项目: 国家自然科学基金(11572076;914748203);国家重点基础研究发展计划(973计划)(2014CB049000)
详细信息
    作者简介:

    何冬东(1988—),男,博士生(E-mail: d.dong.he@mail.dlut.edu.cn);高强(1978—),教授,博士,博士生导师(通讯作者. E-mail: qgao@dlut.edu.cn).

  • 中图分类号: TB122; O322

An Efficient Numerical Method for Computing Dynamic Responses of Periodic Piecewise Linear Systems

Funds: The National Natural Science Foundation of China(11572076;914748203);The National Basic Research Program of China(973 Program)(2014CB049000)
  • 摘要: 基于参变量变分原理,提出了一种求解具有大量间隙弹簧的周期性分段线性系统动态响应的高效率数值方法.通过参变量变分原理来描述间隙弹簧,将复杂的非线性动力问题转化为线性互补问题求解,避免了求解过程中的迭代和刚度阵更新,该算法能准确判断间隙弹簧的压缩和松弛状态.基于结构的周期性和能量传播速度的有限性,提出了一种求解系统动态响应的高效率精细积分方法.该算法指出周期结构的矩阵指数中存在大量的相同元素和零元素,从而不需要重复计算和存储这部分元素,节省了计算量并降低了计算机存储要求.分析了一个五自由度分段线性系统在简谐荷载作用下的动力学行为,包括稳定的周期运动、准周期运动和混沌运动.通过与RungeKutta方法的比较,该文方法的正确性和高效率得到了验证.
  • [1] INABA N, SEKIKAWA M. Chaos disappearance in a piecewise linear Bonhoeffer-Van der Pol dynamics with a bistability of stable focus and stable relaxation oscillation under weak periodic perturbation[J]. Nonlinear Dynamics,2014,76(3): 1711-1723.
    [2] GOUZ J, SARI T. A class of piecewise linear differential equations arising in biological models[J]. Dynamics & Stability of Systems,2002,17(4): 299-316.
    [3] KALMR-NAGY T, CSIKJA R, ELGOHARY T A. Nonlinear analysis of a 2-DOF piecewise linear aeroelastic system[J]. Nonlinear Dynamics,2016,85(2): 739-750.
    [4] MOTRO R. Tensegrity: Structural Systems for the Future[M]. London: Kogan Page Science, 2003.
    [5] PUN D, LIU Y B. On the design of the piecewise linear vibration absorber[J]. Nonlinear Dynamics,2000,22(4): 393-413.
    [6] 滕云楠, 韩明. 振动压实-土系统非线性滞回模型研究[J]. 真空, 2016,53(4): 61-64.(TENG Yunnan, HAN Ming. Study on nonlinear hysteretic model of vibration compaction-soil system[J]. Vacuum,2016,53(4): 61-64.(in Chinese))
    [7] ZHANG C. Theoretical design approach of four-dimensional piecewise-linear multi-wing hyperchaotic differential dynamic system[J]. Optik-International Journal for Light and Electron Optics,2016,127(11): 4575-4580.
    [8] CHOI Y S, NOAH S T. Forced periodic vibration of unsymmetric piecewise-linear systems[J]. Journal & Sound Vibration,1988,121(1): 117-126.
    [9] HUDSON J L, ROSSLER O E, KILLORY H C. Chaos in a four-variable piecewise-linear system of differential equations[J]. IEEE Transaction on Circuits & Systems,1988,35(7): 902-908.
    [10] NAYFEH A H. Introduction To Perturbation Techniques [M]. New York: John Wiley & Sons, 1981.
    [11] 吴志强, 雷娜. 分段线性系统的振动性能分析[J]. 振动与冲击, 2015,34(18): 94-99.(WU Zhiqiang, LEI Na. Vibration performance analysis of piecewise linear system[J]. Journal of Vibration and Shock,2015,34(18): 94-99.(in Chinese))
    [12] 钟顺, 陈予恕. 分段线性非线性汽车悬架系统的分岔行为[J]. 应用数学和力学, 2009,30(6): 631-638.(ZHONG Shun, CHEN Yushu. Bifurcation of piecewise-linear nonlinear vibration system of vehicle suspension[J]. Applied Mathematics and Mechanics,2009,30(6): 631-638.(in Chinese))
    [13] NARIMANI A, GOLNARAGHI M E, JAZAR G N. Frequency response of a piecewise linear vibration isolator[J]. Journal of Vibration Control,2004,10(12): 1775-1794.
    [14] DESHPANDE S, MEHTA S, JAZAR G N. Optimization of secondary suspension of piecewise linear vibration isolation systems[J]. International Journal of Mechanical Sciences,2006,48(4): 341-377.
    [15] MOUSSI E H, BELLIZZI S, COCHELIN B, et al. Nonlinear normal modes of a two degrees-of-freedom piecewise linear system[J]. Mechanical Systems & Signal Processing,2015,64(S1): 266-281.
    [16] XU L, LU M W, CAO Q. Nonlinear vibrations of dynamical systems with a general form of piecewise-linear viscous damping by incremental harmonic balance method[J]. Physics Letters A,2002,301(1): 65-73.
    [17] ZHONG W, ZHANG R. Parametric variational principles and their quadratic programming solutions in plasticity[J]. Computers & Structures,1988,30(4): 887-896.
    [18] YU S D. An efficient computational method for vibration analysis of unsymmetric piecewise-linear dynamical systems with multiple degrees of freedom[J]. Nonlinear Dynamics,2013,71(3): 493-504.
    [19] ACARY V, DE JONG H, BROGLIATO B. Numerical simulation of piecewise-linear models of gene regulatory networks using complementarity systems[J]. Physica D: Nonlinear Phenomena,2014,269(2): 103-119.
    [20] ZHONG W, WILLIAMS F. A precise time step integration method[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical,1994,208(63): 427-430.
    [21] ZHONG W X. On precise integration method[J]. Journal of Computational and Applied Mathematics,2004,163(1): 59-78.
    [22] SHA D, SUN H, ZHANG Z, et al. A variational inequality principle in solid mechanics and application in physically non-linear problems[J]. International Journal for Numerical Methods in Biomedical Engineering,1990,6(1): 35-45.
  • 加载中
计量
  • 文章访问数:  1187
  • HTML全文浏览量:  235
  • PDF下载量:  691
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-02-04
  • 刊出日期:  2018-07-15

目录

    /

    返回文章
    返回