留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于人机耦合的下肢外骨骼动力学分析及仿真

张燕 李梵茹 李威 刘作军

张燕, 李梵茹, 李威, 刘作军. 基于人机耦合的下肢外骨骼动力学分析及仿真[J]. 应用数学和力学, 2019, 40(7): 780-790. doi: 10.21656/1000-0887.390212
引用本文: 张燕, 李梵茹, 李威, 刘作军. 基于人机耦合的下肢外骨骼动力学分析及仿真[J]. 应用数学和力学, 2019, 40(7): 780-790. doi: 10.21656/1000-0887.390212
ZHANG Yan, LI Fanru, LI Wei, LIU Zuojun. Dynamic Analysis and Simulation of the Lower Extremity Exoskeleton Based on Human-Machine Interaction[J]. Applied Mathematics and Mechanics, 2019, 40(7): 780-790. doi: 10.21656/1000-0887.390212
Citation: ZHANG Yan, LI Fanru, LI Wei, LIU Zuojun. Dynamic Analysis and Simulation of the Lower Extremity Exoskeleton Based on Human-Machine Interaction[J]. Applied Mathematics and Mechanics, 2019, 40(7): 780-790. doi: 10.21656/1000-0887.390212

基于人机耦合的下肢外骨骼动力学分析及仿真

doi: 10.21656/1000-0887.390212
基金项目: 国家自然科学基金(61773151;61703135);河北省自然科学基金(F2018202279)
详细信息
    作者简介:

    张燕(1975—),女,教授,博士(通讯作者. E-mail: lfr024wzw@163.com).

  • 中图分类号: TP24

Dynamic Analysis and Simulation of the Lower Extremity Exoskeleton Based on Human-Machine Interaction

Funds: The National Natural Science Foundation of China(61773151;61703135)
  • 摘要: 建立了一种包含人机交互力的人体-外骨骼模型,对人体和外骨骼分别采用7连杆的刚体模型进行建模,建立其D-H坐标系,得到人机模型在运动过程中的变化矢量.采用Newton-Euler方程建立动力学方程式,将人机之间的交互力简化为弹力,根据运动中人体和外骨骼质心之间的距离变化得到其相对位移,从而求得运动过程中交互力的大小.最终在ADAMS(automatic dynamic analysis of mechanical system)仿真软件中对动力学模型进行仿真,并将动力学方程得到的关节力矩代入到仿真中,验证了该人体-外骨骼模型的正确性.
  • [1] SANKAI Y. HAL: hybrid assistive limb based on cybernics[C]// The 13th International Symposium, ISRR. Hiroshima, Japan, 2007.
    [2] ZOSS A B, KAZEROONI H, CHU A. Biomechanical design of the Berkeley lower extremity exoskeleton(BLEEX)[J]. IEEE/ASME Transactions on Mechatronics,2006,11(2): 128-138.
    [3] BOCK T, LINNER T. Construction Robots: Elementary Technologies and Single-Task Construction Robots [M]. Cambridge: Cambridge University Press, 2016.
    [4] GUO Z, YU H, YIN Y H. Developing a mobile lower limb robotic exoskeleton for gait rehabilitation[J]. Journal of Medical Devices,2014,8(4): 044503.
    [5] 杨魏, 张秀峰, 杨灿军, 等. 基于人机5杆模型的下肢外骨骼系统设计[J]. 浙江大学学报(工学版), 2014,48(3): 430-435.(YANG Wei, ZHANG Xiufeng, YANG Canjun, et al. Design of a lower extremity exoskeleton based on 5-bar human machine model[J]. Journal of Zhejiang University(Engineering Science),2014,48(3): 430-435.(in Chinese))
    [6] FENG T R, NISHIGUCHI J, LI X, et al. Dynamical analyses of humanoid’s walking by using extended Newton-Euler method[C]// The Twentieth International Symposium on Artificial Life and Robotics 2015 . Beppu, Japan, 2015.
    [7] 贾山, 韩亚丽, 路新亮, 等. 基于人体特殊步态分析的下肢外骨骼机构设计[J]. 机器人, 2014,36(4): 392-401.(JIA Shan, HAN Yali, LU Xinliang, et al. Design of lower extremity exoskeleton based on analysis on special human gaits[J]. Robot,2014,36(4): 392-401.(in Chinese))
    [8] 唐志勇, 谭振中, 裴忠才. 下肢外骨骼机器人动力学分析与设计[J]. 系统仿真学报, 2013,25(6): 1338-1344.(TANG Zhiyong, TAN Zhenzhong, PEI Zhongcai. Design and dynamic analysis of lower extremity exoskeleton[J]. Journal of System Simulation,2013,25(6): 1338-1344.(in Chinese))
    [9] 韩亚丽, 王兴松. 下肢助力外骨骼的动力学分析及仿真[J]. 系统仿真学报, 2013,25(1): 61-67.(HAN Yali, WANG Xingsong. Dynamic analysis and simulation of lower limb power-assisted exoskeleton[J]. Journal of System Simulation,2013,25(1): 61-67.(in Chinese))
    [10] 陈贵亮, 李长鹏, 赵月, 等. 下肢外骨骼康复机器人的动力学建模及神经网络辨识仿真[J]. 机械设计与制造, 2013(11): 197-200.(CHEN Guiliang, LI Changpeng, ZHAO Yue, et al. Dynamic modeling and neural network identification simulation for lower limbs exoskeletons rehabilitation robot[J]. Machinery Design & Manufacture,2013(11): 197-200.(in Chinese))
    [11] SPENCER A M, KEVIN H H, CLARE H, et al. An assistive control approach for a lower-limb exoskeleton to facilitate recovery of walking following stroke[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering,2015,23(3): 441-449.
    [12] ZHU Q H, CHEN Z L, LI W D, et al. Structure design and analysis of compliant human-machine interface mechanism for exoskeletons[C]//2017 IEEE Workshop on Advanced Robotics and Its Social Impacts(ARSO) . Austin, USA, 2017.
    [13] PENG Z Q, MA G W, LUO M D. Modeling and gait generation of powered lower exoskeleton robot[C] //2017 12th IEEE Conference on Industrial Electronics and Applications(ICIEA) . Siem Reap, Cambodia, 2017: 1802-1807.
    [14] 刘棣斐, 唐志勇, 裴忠才. 基于导纳原理的下肢外骨骼摆动控制[J]. 北京航空航天大学学报, 2015,41(6): 1019-1025.(LIU Difei, TANG Zhiyong, PEI Zhongcai. Swing motion control of lower extremity exoskeleton based on admittance method[J]. Journal of Beijing University of Aeronautics and Astronautics,2015,41(6): 1019-1025.(in Chinese))
    [15] WANG D H, LEE K M, GUO J J, et al. An adaptive knee joint exoskeleton based on biological geometries[J]. IEEE/ASME Transactions on Mechatronics,2014,19(4): 1268-1278.
    [16] PHOENIX Medical Exoskeleton[EB/OL]. [2016-11-18]. https://www.suitx.com/phoenix-medical-exoskeleton.
    [17] 易金花, 喻洪流, 张颖, 等. 中央驱动式上肢康复机器人运动学建模与分析[J]. 生物医学工程学, 2015,32(6): 1196-1201.(YI Jinhua, YU Hongliu, ZHANG Ying, et al. Kinematics modeling and analysis of central-driven robot for upper limb rehabilitation after stroke[J]. Journal of Biomedical Engineering,2015,32(6): 1196-1201.(in Chinese))
    [18] 赵志刚, 王砚麟, 苏程, 等. 多机器人协调吊运系统逆运动学分析及优化[J]. 应用数学和力学, 2017,38(6): 643-651.(ZHAO Zhigang, WANG Yanlin, SU Cheng, et al. Analysis and optimization on inverse kinematics for multi-robot parallel lifting systems[J]. Applied Mathematics and Mechanics,2017,38(6): 643-651.(in Chinese))
    [19] 王阳, 宋遒志, 王晓光. 下肢外骨骼机器人人机腿部约束分析[J]. 现在制造技术与装备, 2016(1): 50-52.(WANG Yang, SONG Qiuzhi, WANG Xiaoguang. Research of a lower extremity exoskeleton for human-machine leg restriction[J]. Manufacturing Technology and Equipment,2016(1): 50-52.(in Chinese))
  • 加载中
计量
  • 文章访问数:  1241
  • HTML全文浏览量:  163
  • PDF下载量:  720
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-03
  • 修回日期:  2019-05-23
  • 刊出日期:  2019-07-01

目录

    /

    返回文章
    返回