留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

界面弧形裂纹对混凝土开裂强度的影响研究

尹月明 李宗利 李东奇 吕从聪

尹月明, 李宗利, 李东奇, 吕从聪. 界面弧形裂纹对混凝土开裂强度的影响研究[J]. 应用数学和力学, 2019, 40(9): 1011-1024. doi: 10.21656/1000-0887.390330
引用本文: 尹月明, 李宗利, 李东奇, 吕从聪. 界面弧形裂纹对混凝土开裂强度的影响研究[J]. 应用数学和力学, 2019, 40(9): 1011-1024. doi: 10.21656/1000-0887.390330
YIN Yueming, LI Zongli, LI Dongqi, Lü Congcong. Study on Effects of Interfacial Arc Cracks on Cracking Strengths of Concrete[J]. Applied Mathematics and Mechanics, 2019, 40(9): 1011-1024. doi: 10.21656/1000-0887.390330
Citation: YIN Yueming, LI Zongli, LI Dongqi, Lü Congcong. Study on Effects of Interfacial Arc Cracks on Cracking Strengths of Concrete[J]. Applied Mathematics and Mechanics, 2019, 40(9): 1011-1024. doi: 10.21656/1000-0887.390330

界面弧形裂纹对混凝土开裂强度的影响研究

doi: 10.21656/1000-0887.390330
基金项目: 国家重点研发计划(2017YFC405101-2);国家自然科学基金(51379178)
详细信息
    作者简介:

    尹月明(1992—),女,硕士生(E-mail: 1084192387@qq.com);李宗利(1967—),男,教授,博士(通讯作者. E-mail: bene@nwsuaf.edu.cn).

  • 中图分类号: TU528.1; TB333

Study on Effects of Interfacial Arc Cracks on Cracking Strengths of Concrete

Funds: The National Key R&D Program of China(2017YFC405101-2);The National Natural Science Foundation of China(51379178)
  • 摘要: 混凝土由于水分蒸发、干缩、泌水以及骨料与砂浆变形不一致等原因会导致骨料与砂浆的界面层中产生弧形裂纹,从而对混凝土开裂强度产生很大影响.从细观角度将混凝土视作由粗骨料和水泥砂浆组成的两相复合材料,并将界面层视为粗骨料与水泥砂浆的接触层进行分析.首先基于相互作用直推估计(interaction direct derivative, IDD)法,考虑混凝土中骨料颗粒的相互作用,将施加在混凝土表征体积元的远场外荷载等效为无限大基体中含单一骨料的等效外荷载.然后,将等效外荷载转化为最大和最小主应力,基于断裂力学理论得到界面层中弧形裂纹的应力强度因子,并根据复合型裂纹幂准则判断弧形裂纹是否发生开裂,进而来研究混凝土开裂强度的变化规律.通过与数值模拟结果的比较,验证了界面弧形裂纹应力强度因子解析解的有效性,参数分析结果表明,当裂纹与最大主应力垂直或与最小主应力呈45°夹角时,骨料周围弧形裂纹最易发生开裂破坏.随着裂纹长度增加,混凝土受拉和受压开裂强度先减小后增大,且均存在最不利的裂纹长度.混凝土开裂强度随着骨料体积分数的增加而增大,随着骨料粒径的增大而减小.在裂纹长度较小时,增大骨料的弹性模量有利于提高混凝土开裂强度.骨料周围承受同号应力可以提高混凝土的开裂强度,反之,异号应力会降低开裂强度.
  • [1] 王海龙, 李庆斌. 孔隙水对湿态混凝土抗压强度的影响[J]. 工程力学, 2006,23(10): 141-144.(WANG Hailong, LI Qingbin. Effect of pore water on the compressive strength of wet concrete[J]. Engineering Mechanics,2006, 23(10): 141-144.(in Chinese))
    [2] 陈惠苏, 孙伟. 水泥基复合材料集料与浆体界面研究综述(二): 界面微观结构的形成、劣化机理及其影响因素[J]. 硅酸盐学报, 2004,32(1): 70-79.(CHEN Huisu, SUN Wei. Interfacial transition zone between aggregate and paste in cementitious composites(Ⅱ): mechanism of formation and degradation of interfacial transition zone microstructure, and its influence factors[J]. Journal of the Chinese Ceramic Society,2004,32(1): 70-79.(in Chinese))
    [3] MILNE I, RITCHIE R O, KARIHALOO B L. Fundamental Theories and Mechanisms of Failure [M]. Oxford Elsevier Pergamon, 2003.
    [4] AKCAOGLU T, TOKYAY M, ELIK T. Effect of coarse aggregate size and matrix quality on ITZ and failure behavior of concrete under uniaxial compression[J]. Cement and Concrete Composites,2004,26(6): 633-638.
    [5] HILL R A. A self-consistent mechanics of composite materials[J]. Journal of the Mechanics and Physics of Solids,1965,13(4): 213-222.
    [6] CHRISTENSEN R M, LO K H. Solutions for effective shear properties in three phase sphere and cylinder models[J]. Journal of the Mechanics and Physics of Solids,1979,27(4): 315-330.
    [7] MORI T, TANAKA K. Average stress in the matrix and average elastic energy of materials with misfitting inclusions[J]. Acta Metallurgica,1973,21(5): 571-574.
    [8] ZHENG Q S, DU D X. An explicit and universally applicable estimate for the effective properties of multiphase composites which accounts for inclusion distribution[J]. Journal of the Mechanics and Physics of Solids,2001,49(11): 2765-2788.
    [9] 杜丹旭. 多相材料有效性质的理论研究[D]. 博士学位论文. 北京: 清华大学, 2000.(DU Danxu. Theoretical studies on the effective properties of multiphase materials[D]. PhD Thesis. Beijing: Tsinghua University, 2000.(in Chinese))
    [10] YANG C C, HUANG R. A two-phase model for predicting the compressive strength of concrete[J]. Cement and Concrete Research,1996,26(10): 1567-1577.
    [11] LI Guoqiang, ZHAO Li, PANG Suseng. Four-phase sphere modeling of effective bulk modulus of concrete[J]. Cement and Concrete Research,1999,29(6): 839-845.
    [12] ZHENG J J, ZHOU X Z. Three-phase composite sphere model for the prediction of chloride diffusivity of concrete[J].Journal of Materials in Civil Engineering,2008,20(3): 205-211.
    [13] 李宗利, 邓朝莉, 张国辉. 考虑骨料级配的混凝土有效弹性模量预测模型[J]. 水利学报, 2016,47(4): 575-581.(LI Zongli, DENG Chaoli, ZHANG Guohui. A predictive model of effective elastic modulus of concrete under influence of aggregate gradation[J]. Journal of Hydraulic Engineering,2016,47(4): 575-581.(in Chinese))
    [14] PRASAD P B N, SIMHA K R Y. Interface crack around circular inclusion: SIF, kinking, debonding energetics[J]. Engineering Fracture Mechanics,2003,70(2): 285-307.
    [15] 付云伟, 张龙, 倪新华, 等. 考虑夹杂相互作用的复合陶瓷夹杂界面的断裂分析[J]. 力学学报, 2016,48(1): 154-162.(FU Yunwei, ZHANG Long, NI Xinhua, et al. Interface cracking analysis with inclusions interaction in composite ceramic[J]. Chinese Journal of Theoretic and Applied Mechanics,2016,48(1): 154-162.(in Chinese))
    [16] CABALLERO A, CAROL I, LPEZ C M. Ameso-level approach to 3D numerical analysis of cracking and fracture of concrete materials[J]. Fatigue & Fracture of Engineering Materials and Structures,2006,29(12): 979-991.
    [17] 王娟, 李庆斌, 卿龙邦, 等. 混凝土单轴抗压强度三维细观数值仿真[J]. 工程力学, 2014,31(3): 39-44.(WANG Juan, LI Qingbin, QING Longbang, et al. 3D simulation of concrete strength under uniaxial compressive load [J]. Engineering Mechanics,2014, 31(3): 39-44.(in Chinese))
    [18] 白卫峰, 陈健云, 范书立. 细观夹杂理论预测湿态混凝土抗压强度[J]. 工程力学, 2008,11(25): 134-140.(BAI Weifeng, CHEN Jianyun, FAN Shuli. Prediction of compressive strength of moisture concrete by meso-inclusion theory[J]. Engineering Mechanics,2008,11(25): 134-140.(in Chinese))
    [19] 吴志飞. 基于细观力学理论的混凝土力学性能研究[D]. 硕士学位论文. 南昌: 南昌大学, 2008.(WU Zhifei. Study on mechanical properties of concrete based on mesomechanics theory[D]. Master Thesis. Nanchang: Nanchang University, 2008.(in Chinese))
    [20] AKCAOGLU T L, TOKYAY M, ELIK T. Effect of coarse aggregate size and matrix quality on ITZ and failure behavior of concrete under uniaxial compression[J]. Cement and Concrete Composites,2004,26(6): 633-638.
    [21] 李国栋. 桥梁高性能混凝土早期收缩裂缝形成机理及控制[D]. 博士学位论文. 哈尔滨: 哈尔滨工业大学, 2013.(LI Guodong. Mechanism and control for early-age shrinkage crack of high performance concrete used for bridge engineering[D]. PhD Thesis. Harbin: Harbin Institute of Technology, 2013.(in Chinese))
    [22] 寇剑锋, 徐绯, 郭家平, 等. 黏聚力模型破坏准则及其参数选取[J]. 机械强度, 2011,33(5): 714-718.(KOU Jianfeng, XU Fei, GUO Jiaping, et al. Damage laws of cohesive zone model and selection of the parameters[J]. Journal of Mechanical Strength,2011,33(5): 714-718.(in Chinese))
    [23] 李世愚, 和泰名, 尹祥础, 等. 岩石断裂力学导论[M]. 合肥: 中国科学技术大学出版社, 2010.(LI Shiyu, HE Taiming, YIN Xiangchu, et al. Introduction to Rock Fracture Mechanics [M]. Hefei: China University of Science and Technology Press, 2010.(in Chinese))
    [24] 韩宇栋, 张君, 高原. 粗骨料体积含量对混凝土断裂参数的影响[J]. 工程力学, 2013,30(3): 192-197.(HAN Yudong, ZHANG Jun, GAO Yuan. Effect of coarse aggregate content on fracture parameters of concrete[J]. Engineering Mechanics,2013,30(3): 192-197.(in Chinese))
    [25] 张君, 王林, 孙明, 等. 粗细骨料比例和水泥石强度对混凝土断裂参数的影响[J]. 工程力学, 2004,21(1): 136-142.(ZHANG Jun, WANG Lin, SUN Ming, et al. Effect of coarse/fine aggregate ratio and cement matrix strength on fracture parameters of concrete[J]. Engineering Mechanics,2004,21(1): 136-142.(in Chinese))
    [26] SIMEONOV P, AHMAD S. Effect of transition zone on the elastic behavior of cement-based composites[J]. Cement and Concrete Research,1995,25(1): 165-176.
    [27] 徐世烺. 混凝土断裂力学[M]. 北京: 科学出版社, 2011.(XU Shilang. Concrete Fracture Mechanics of Concrete [M]. Beijing: Science Press, 2011.(in Chinese))
  • 加载中
计量
  • 文章访问数:  1061
  • HTML全文浏览量:  178
  • PDF下载量:  323
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-28
  • 修回日期:  2019-02-25
  • 刊出日期:  2019-09-01

目录

    /

    返回文章
    返回