留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热力耦合问题数学均匀化方法的计算精度

李鸿鹏 凌松 戚振彪 姜克儒 陈磊

李鸿鹏, 凌松, 戚振彪, 姜克儒, 陈磊. 热力耦合问题数学均匀化方法的计算精度[J]. 应用数学和力学, 2020, 41(1): 54-69. doi: 10.21656/1000-0887.400119
引用本文: 李鸿鹏, 凌松, 戚振彪, 姜克儒, 陈磊. 热力耦合问题数学均匀化方法的计算精度[J]. 应用数学和力学, 2020, 41(1): 54-69. doi: 10.21656/1000-0887.400119
LI Hongpeng, LING Song, QI Zhenbiao, JIANG Keru, CHEN Lei. Accuracy of the Mathematical Homogenization Method for Thermomechanical Problems[J]. Applied Mathematics and Mechanics, 2020, 41(1): 54-69. doi: 10.21656/1000-0887.400119
Citation: LI Hongpeng, LING Song, QI Zhenbiao, JIANG Keru, CHEN Lei. Accuracy of the Mathematical Homogenization Method for Thermomechanical Problems[J]. Applied Mathematics and Mechanics, 2020, 41(1): 54-69. doi: 10.21656/1000-0887.400119

热力耦合问题数学均匀化方法的计算精度

doi: 10.21656/1000-0887.400119
详细信息
    作者简介:

    李鸿鹏(1987—),男,硕士(E-mail: 931061658@qq.com);陈磊(1986—),男,博士(通讯作者. E-mail: chenlei2019@buaa.edu.cn).

  • 中图分类号: O302

Accuracy of the Mathematical Homogenization Method for Thermomechanical Problems

  • 摘要: 针对复合材料周期结构热力耦合问题,推导了数学均匀化方法(MHM)各阶摄动位移的全解耦格式和各阶影响函数控制方程,并使用加权残量方法将其转化为易于编程计算的有限元列式.在解耦格式中,各阶摄动位移是相应阶次的影响函数和宏观场导数的乘积,即影响函数和宏观场导数的计算精度共同决定摄动项的精度,其中影响函数的计算精度取决于单胞边界条件选取的适用性.针对2D复合材料周期结构静力学问题,使用超单胞边界条件和微分求积有限单元法,分别提高了影响函数和宏观场导数的求解精度.在此基础上,研究了高阶展开项对MHM真实位移精度的影响,确定了二阶摄动项的必要性.最后应用最小势能原理评估了各阶摄动MHM的计算精度,数值比较结果验证了结论的正确性.
  • [1] BERTHELOT J M. Composite Materials: Mechanical Behavior and Structural Analysis [M]. New York: Springer, 1999.
    [2] KALIDINDI S R, ABUSAFIEH A. Longitudinal and transverse moduli and strengths of low angle 3-D braided composites[J]. Journal of Composite Materials,1996,30(8): 885-905.
    [3] BABUKA I. Solution of interface problems by homogenization: Ⅰ[J]. SIAM Journal on Mathematical Analysis,1976,7(5): 603-634.
    [4] BABUKA I. Solution of interface problems by homogenization: Ⅱ[J]. SIAM Journal on Mathematical Analysis,1976,7(5): 635-645.
    [5] BENSSOUSAN A, LIONS J L. Asymptotic Analysis for Periodic Structures [M]. Amsterdam: North-Holland, 1978.
    [6] STROUBOULIS T, BABUSKA I, COPPS K. The generalized finite element method: an example of its implementation and illustration of its performance[J]. International Journal for Numerical Methods in Engineering,2000,47(8): 1401-1417.
    [7] BABUKA I, OSBOM J. Generalized finite element methods: their performance and their relation to mixed methods[J]. SIAM Journal on Numerical Analysis,1983,20: 510-536.
    [8] HOU T Y, WU X H. A multiscale finite element method for elliptic problems in composite materials and porous media[J]. Journal of Computational Physics,1997,134: 169-189.
    [9] HOU T Y, WU X H, CAI Z Q. Convergence of a multi-scale finite element method for elliptic problems with rapidly oscillating coefficients[J]. Mathematics of Computation,1999,68(227): 913-943.
    [10] WEINAN E, BJORN E. The heterogeneous multi-scale methods[J]. Commun Math Sci,2003,1: 87-132.
    [11] WEINAN E, BJORN E, LI X T. Heterogeneous multiscale methods: a review[J]. Communications in Computational Physics,2007,2(3): 367-450.
    [12] XING Y F, YANG Y. An eigenelement method of periodical composite structures[J]. Composite Structures,2011,93: 502-512.
    [13] XING Y F, YANG Y, WANG X M. A multiscale eigenelement method and its application to periodical composite structures[J]. Composite Structures,2010,92(9): 2265-2275.
    [14] TERADA K, KURUMATANI M, USHIDAI T. A method of two-scale thermo-mechanical analysis for porous solids with micro-scale heat transfer[J]. Computational Mechanics,2010,46(2): 269-285.
    [15] MUHAMMAD R, ERDATA N, NAOYUKI W. A novel asymptotic expansion homogenization analysis for 3-D composite with relieved periodicity in the thickness direction[J]. Composites Science and Technology,2014,97: 63-73.
    [16] MUHAMMAD R, ERDATA N, NAOYUKI W. Thermomechanical properties and stress analysis of 3-D textile composites by asymptotic expansion homogenization method[J]. Composites Part B: Engineering,2014,60: 378-391.
    [17] BARROQUEIRO B, DIAS-DE-OLIVEIRA J, PINHO-DA-CRUZ J. Practical implementation of asymptotic expansion homogenization in thermoelasticity using a commercial simulation software[J]. Composite Structures,2016,141: 117-131.
    [18] ZHAI J J, CHENG S, ZENG T. Thermo-mechanical behavior analysis of 3D braided composites by multiscale finite element method[J]. Composite Structures,2017,176: 664-672.
    [19] 李志青, 冯永平. 一类小周期结构热力耦合问题的双尺度渐近分析[J]. 广州大学学报, 2016,15(2): 27-32.(LI Zhiqing, FENG Yongping. Two-scale asymptotic analysis on one class of thermoelastic coupling problem in small periodic structure[J]. Chinese Journal of Guangzhou University,2016,15(2): 27-32.(in Chinese))
    [20] YANG Z Q, CUI J Z, ZHOU S. Thermo-mechanical analysis of periodic porous materials with microscale heat transfer by multiscale asymptotic expansion method[J]. International Journal of Heat and Mass Transfer,2016,92: 904-919.
    [21] GUAN X F, LIU X, JIA X. A stochastic multiscale model for predicting mechanical properties of fiber reinforced concrete[J]. International Journal of Solids and Structures Volumes,2015,56/57: 280-289.
    [22] YANG Z Q, CUI J Z, MA Q. The second-order two-scale computation for integrated heat transfer problem with conduction, convection and radiation in periodic porous materials[J]. Discrete and Continuous Dynamical Systems(Series B),2014,19(3): 827-848.
    [23] YANG Z Q, SUN Y, CUI J Z, et al. A multiscale algorithm for heat conduction-radiation problems in porous materials with quasi-periodic structures[J]. Communications in Computational Physics,2018,24(1): 204-233.
    [24] ALLAIRE G, HABIBI Z. Second order corrector in the homogenization of a conductive-radiative heat transfer problem[J]. Discrete & Continuous Dynamical Systems(Series B),2013,18(1): 1-36.
    [25] WAN X, CAO L Q, WONG Y S. Multiscale computation and convergence for coupled thermoelastic system in composite materials[J]. SIAM Journal on Multiscale Modeling and Simulation,2015,13(2): 661-690.
    [26] YANG Z Q, CUI J Z, SUN Y. Multiscale analysis method for thermo-mechanical performance of periodic porous materials with interior surface radiation[J]. International Journal for Numerical Methods in Engineering,2016,105(5): 323-350.
    [27] HAN F, CUI J Z, YU Y. The statistical second-order two-scale method for thermomechanical properties of statistically inhomogeneous materials[J]. Computational Materials Science,2009,46(3): 654-659.
    [28] HAN F, CUI J Z, YU Y. The statistical second-order two-scale method for mechanical properties of statistically inhomogeneous materials[J].International Journal for Numerical Methods in Engineering,2010,84: 972-988.
    [29] XING Y F, CHEN L. Accuracy of multiscale asymptotic expansion method[J].Composite Structures,2014,112: 38-43.
    [30] 陈磊, 邢誉峰. 若干周期复合材料结构数学均匀化方法的计算精度[J]. 航空学报, 2014,36(5): 1520-1529.(CHEN Lei, XING Yufeng. Accuracy analysis of mathematical homogenization method for several periodical composite structure[J]. Acta Aeronautica et Astronautica Sinica,2014,36(5): 1520-1529.(in Chiniese))
    [31] XING Y F, GAO Y H, CHEN L. Solution methods for two keyproblems in multiscale asymptotic expansion method[J]. Composite Structures,2017,160: 854-866.
    [32] 邢誉峰, 李敏. 计算固体力学原理与方法[M]. 北京: 北京航空航天大学出版社, 2011.(XING Yufeng, LI Min. Principle and Method of Computational Solid Mechanics [M]. Beijing: Beihang University Press, 2011.(in Chiniese))
    [33] BERT C W, MALIK M. Differential quadrature method in computational mechanics: a review[J]. Applied Mechanics Reviews,1996,49: 1-28.
    [34] XING Y F, LIU B. A differential quadrature finite element method[J]. International Journal of Applied Mechanics,2010,2(1): 207-227.
  • 加载中
计量
  • 文章访问数:  755
  • HTML全文浏览量:  117
  • PDF下载量:  289
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-22
  • 修回日期:  2019-11-18
  • 刊出日期:  2020-01-01

目录

    /

    返回文章
    返回