留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

爆炸和冲击载荷下金属材料及结构的动态失效仿真

柳占立 初东阳 王涛 王毅刚

柳占立, 初东阳, 王涛, 王毅刚. 爆炸和冲击载荷下金属材料及结构的动态失效仿真[J]. 应用数学和力学, 2021, 42(1): 1-14. doi: 10.21656/1000-0887.410262
引用本文: 柳占立, 初东阳, 王涛, 王毅刚. 爆炸和冲击载荷下金属材料及结构的动态失效仿真[J]. 应用数学和力学, 2021, 42(1): 1-14. doi: 10.21656/1000-0887.410262
LIU Zhanli, CHU Dongyang, WANG Tao, WANG Yigang. Dynamic Failure Simulation of Metal Materials and Structures Under Blast and Impact Loading[J]. Applied Mathematics and Mechanics, 2021, 42(1): 1-14. doi: 10.21656/1000-0887.410262
Citation: LIU Zhanli, CHU Dongyang, WANG Tao, WANG Yigang. Dynamic Failure Simulation of Metal Materials and Structures Under Blast and Impact Loading[J]. Applied Mathematics and Mechanics, 2021, 42(1): 1-14. doi: 10.21656/1000-0887.410262

爆炸和冲击载荷下金属材料及结构的动态失效仿真

doi: 10.21656/1000-0887.410262
基金项目: 科学挑战专题基金(TZ2018002);民用飞机专项科研项目(MJ-2017-F-20)
详细信息
    作者简介:

    柳占立(1981—),男,副教授,博士,博士生导师(通讯作者. E-mail: liuzhanli@tsinghua.edu.cn).

  • 中图分类号: O232

Dynamic Failure Simulation of Metal Materials and Structures Under Blast and Impact Loading

  • 摘要: 通过数值模拟研究爆炸冲击载荷下金属材料和结构的动态失效规律对表征爆炸冲击毁伤效应及设计新型抗冲击结构具有重要意义.强动载下金属材料失效涉及材料大变形、热力耦合、材料状态变化等多个复杂物理过程,给数值仿真带来了极大挑战,其中包括裂纹、剪切带等复杂失效模式的几何描述、动态失效准则的确定、塑性与损伤耦合演化的描述等问题.针对这些挑战性问题,基于能量变分建立描述金属动态失效过程的热弹塑性相场理论和计算模型,实现了断裂与剪切带失效模式的统一描述,并提出了其显式有限元高效求解策略.进一步将该模型应用于爆炸冲击载荷下金属脆韧失效模式转变、绝热剪切带(ASBs)自组织及冲击波作用下薄壁圆盘失效形式转变三个典型金属动态失效问题,验证了理论模型的准确性及计算模型的稳健性.该工作为后续开展基于仿真的爆炸冲击毁伤评估及防护结构设计研究奠定了基础.
  • [1] MENKES S B, OPAT H J. Tearing and shear failures in explosively loaded broken beams[J]. Explosion Mechanics,1973,13: 480-486.
    [2] TEELING-SMITH R G, NURICK G N. The deformation and tearing of thin circular plates subjected to impulsive loads[J]. International Journal of Impact Engineering,1991,11(1): 77-91.
    [3] NURICK G N, SHAVE G C. The deformation and tearing of thin square plates subjected to impulsive loads: an experimental study[J]. International Journal of Impact Engineering,1996,18(1): 99-116.
    [4] LEE Y W, WIERZBICKI T. Fracture prediction of thin plates under localized impulsive loading, part Ⅰ: dishing[J]. International Journal of Impact Engineering,2005,31(10): 1253-1276.
    [5] YOUNG-WOONG L, WIERZBICKI T. Fracture prediction of thin plates under localized impulsive loading, part II: discing and petalling[J].International Journal of Impact Engineering,2005,31(10):1277-1308.
    [6] MARCHAND A, DUFFY J. An experimental study of the formation process of adiabatic shear bands in a structural steel[J]. Journal of the Mechanics and Physics of Solids ,1988,36(3): 251-283.
    [7] ZHOU M, ROSAKIS A J, RAVICHANDRAN G. Dynamically propagating shear bands in impact-loaded prenotched plates, Ⅰ: experimental investigations of temperature signatures and propagation speed[J]. Journal of the Mechanics and Physics of Solids ,1996,44(6): 981-1006.
    [8] GUDURU P R, RAVICHANDRAN G, ROSAKIS A J. Observations of transient high temperature vortical microstructures in solids during adiabatic shear banding[J]. Physical Review E,2001,64(3): 036128.
    [9] NESTERENKO V F, MEYERS M A, WRIGHT T W. Self-organization in the initiation of adiabatic shear bands[J]. Acta Materialia,1998,46(1): 327-340.
    [10] XUE Q, MEYERS M A, NESTERENKO V F. Self organization of shear bands in stainless steel[J]. Materials Science and Engineering: A,2004,384(1): 35-46.
    [11] LOVINGER Z, RIKANATI A, ROSENBERG Z, et al. Electromagnetic collapse of thick-walled cylinders to investigate spontaneous shear localization[J]. International Journal of Impact Engineering,2011,38(11): 918-929.
    [12] KALTHOFF J F. Failure methodology of mode-Ⅱ loaded cracks[C]. International Conference on Complexity and Frontiers in Strength and Fracture . Sendai, Japan, 2001.
    [13] FRANCFORT G A, MARIGO J J. Revisiting brittle fracture as an energy minimization problem[J]. Journal of the Mechanics and Physics of Solids,1998,46(8): 1319-1342.
    [14] AMBROSIO L, TORTORELLI V M. Approximation of functional depending on jumps by elliptic functional via Γ-convergence[J]. Communications on Pure and Applied Mathematics,1990,43(8): 999-1036.
    [15] BOURDIN B, FRANCFORT G A, MARIGO J J. Numerical experiments in revisited brittle fracture[J]. Journal of the Mechanics and Physics of Solids,2000,48(4): 797-826.
    [16] MIEHE C, WELSCHINGER F, HOFACKER M. Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations[J]. International Journal for Numerical Methods in Engineering,2010,83(10): 1273-1311.
    [17] MIEHE C, HOFACKER M, WELSCHINGER F. A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits[J]. Computer Methods in Applied Mechanics and Engineering,2010,199(45/48): 2765-2778.
    [18] LARSEN C J. Models for dynamic fracture based on Griffith’s criterion[C]// IUTAM Symposium on Variational Concepts with Applications to the Mechanics of Materials . Dordrecht, 2010: 131-140.
    [19] LARSEN C J, ORTNER C, SLI E. Existence of solutions to a regularized model of dynamic fracture[J]. Mathematical Models and Methods in Applied Science s, 2010,20(7): 1021-1048.
    [20] BOURDIN B, LARSEN C J, RICHARDSON C L. A time-discrete model for dynamic fracture based on crack regularization[J]. International Journal of Fracture,2011,168(2): 133-143.
    [21] BORDEN M J, VERHOOSEL C V, SCOTT M A, et al. A phase-field description of dynamic brittle fracture[J]. Computer Methods in Applied Mechanics and Engineering,2012,217: 77-95.
    [22] HOFACKER M, MIEHE C. A phase field model of dynamic fracture: robust field updates for the analysis of complex crack patterns[J]. International Journal for Numerical Methods in Engineering,2013,93(3): 276-301.
    [23] AMBATI M, GERASIMOV T, DE LORENZIS L. Phase-field modeling of ductile fracture[J]. Computational Mechanics,2015,55(5): 1017-1040.
    [24] AMBATI M, KRUSE R, DE LORENZIS L. A phase-field model for ductile fracture at finite strains and its experimental verification[J]. Computational Mechanics,2016,57(1): 149-167.
    [25] MIEHE C, HOFACKER M, SCHNZEL L M, et al. Phase field modeling of fracture in multi-physics problems, part Ⅱ: Coupled brittle-to-ductile failure criteria and crack propagation in thermo-elastic-plastic solids[J]. Computer Methods in Applied Mechanics and Engineering,2015,294: 486-522.
    [26] MIEHE C, ALDAKHEEL F, RAINA A. Phase field modeling of ductile fracture at finite strains: a variational gradient-extended plasticity-damage theory[J]. International Journal of Plasticity,2016,84: 1-32.
    [27] MCAULIFFE C, WAISMAN H. A unified model for metal failure capturing shear banding and fracture[J]. International Journal of Plasticity,2015,65: 131-151.
    [28] BORDEN M J, HUGHES T J R, LANDIS C M, et al. A phase-field formulation for fracture in ductile materials: Finite deformation balance law derivation, plastic degradation, and stress triaxialityeffects[J]. Computer Methods in Applied Mechanics and Engineering,2016,312: 130-166.
    [29] WANG T, YE X, LIU Z L, et al. A phase-field model of thermo-elastic coupled brittle fracture with explicit time integration[J]. Computational Mechanics,2020,65: 1305-1321.
    [30] CHU D Y, LI X, LIU Z L, et al. A unified phase field damage model for modeling the brittle-ductile dynamic failure mode transition in metals[J]. Engineering Fracture Mechanics,2019,212: 197-209.
    [31] WANG T, LIU Z L, CUI Y N, et al. A thermo-elastic-plastic phase-field model for simulating the evolution and transition of adiabatic shear band, part I: Theory and model calibration[J]. Engineering Fracture Mechanics,2020,232: 107028. DOI: 10.1016/j.engfracmech.2020.107028.
  • 加载中
计量
  • 文章访问数:  1287
  • HTML全文浏览量:  175
  • PDF下载量:  632
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-07
  • 修回日期:  2020-12-07
  • 刊出日期:  2021-01-01

目录

    /

    返回文章
    返回