留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中立多变时滞Volterra型随机动力系统的稳定性

王春生

王春生. 中立多变时滞Volterra型随机动力系统的稳定性 [J]. 应用数学和力学,2021,42(11):1190-1202 doi: 10.21656/1000-0887.410323
引用本文: 王春生. 中立多变时滞Volterra型随机动力系统的稳定性 [J]. 应用数学和力学,2021,42(11):1190-1202 doi: 10.21656/1000-0887.410323
WANG Chunsheng. Stability of Neutral Volterra Stochastic Dynamical Systems With Multiple Delays[J]. Applied Mathematics and Mechanics, 2021, 42(11): 1190-1202. doi: 10.21656/1000-0887.410323
Citation: WANG Chunsheng. Stability of Neutral Volterra Stochastic Dynamical Systems With Multiple Delays[J]. Applied Mathematics and Mechanics, 2021, 42(11): 1190-1202. doi: 10.21656/1000-0887.410323

中立多变时滞Volterra型随机动力系统的稳定性

doi: 10.21656/1000-0887.410323
基金项目: 广东省自然科学基金(2016A030313542);广东省普通高校特色创新项目(自然科学)(2018KTSCX339;2021KQNCX130)
详细信息
    作者简介:

    王春生(1982—),男,副教授,硕士(E-mail: paperspring@163.com

  • 中图分类号: O231.3

Stability of Neutral Volterra Stochastic Dynamical Systems With Multiple Delays

  • 摘要: 探讨了一类非线性随机积分微分动力系统,并通过Banach不动点方法,给出了该系统零解均方渐近稳定的充要条件,形成了中立多变时滞Volterra型随机积分微分动力系统零解均方渐近稳定性定理。与前人的研究方法不同,该文根据多变时滞随机动力系统各时滞的特点,灵活构造算子,相比以往文献的方法更加灵活实用。文章的结论一定程度上改进和发展了相关研究论文的结果。另外,文章所得结论补充并推广了不动点方法在研究非线性中立多变时滞Volterra型随机积分微分动力系统零解稳定性方面的成果。
  • [1] 李岩汀, 许锡宾, 周世良, 等. 基于径向基函数逼近的非线性动力系统数值求解[J]. 应用数学和力学, 2016, 37(3): 311-318. (LI Yanting, XU Xibin, ZHOU Shiliang, et al. A numerical approximation method for nonlinear dynamic systems based on radial basis functions[J]. Applied Mathematics and Mechanics, 2016, 37(3): 311-318.(in Chinese) doi: 10.3879/j.issn.1000-0887.2016.03.009
    [2] BURTON T A. Fixed points and differential equations with asymptotically constant or periodic solution[J]. Electronic Journal of Qualitative Theory of Differential Equations, 2004, 11: 1-31.
    [3] BURTON T A. Fixed points and stability of a nonconvolution equation[J]. Proceedings of the American Mathematical Society, 2004, 132: 3679-3687. doi: 10.1090/S0002-9939-04-07497-0
    [4] ZHANG B. Fixed points and stability in differential equations with variable delays[J]. Nonlinear Analysis: Theory Methods & Applications, 2005, 63(5/7): e233-e242. doi: 10.1016/j.na.2005.02.081
    [5] BURTON T A. Fixed points, stability, and exact linearization[J]. Nonlinear Analysis: Theory Methods & Applications, 2005, 61: 857-870.
    [6] BURTON T A, FURUMOCHI T. Krasnoselskii’s fixed point theorem and stability[J]. Nonlinear Analysis: Theory Methods & Applications, 2002, 49(4): 445-454. doi: 10.1016/S0362-546X(01)00111-0
    [7] BURTON T A, ZHANG B. Fixed points and stability of an integral equation: nonuniqueness[J]. Applied Mathematics Letters, 2004, 17(7): 839-846. doi: 10.1016/j.aml.2004.06.015
    [8] FURUMOCHI T. Stabilities in FDEs by Schauder’s theorem[J]. Nonlinear Analysis: Theory, Methods & Applications, 2005, 63(5/7): e217-e224.
    [9] RAFFOUL Y N. Stability in neutral nonlinear differential equations with functional delays using fixed-point theory[J]. Mathematical and Computer Modelling, 2004, 40(7/8): 691-700. doi: 10.1016/j.mcm.2004.10.001
    [10] LUO J W. Fixed points and stability of neutral stochastic delay differential equations[J]. Journal of Mathematical Analysis and Applications, 2007, 334(1): 431-440. doi: 10.1016/j.jmaa.2006.12.058
    [11] 王春生, 李永明. 中立型多变时滞随机微分方程的稳定性[J]. 山东大学学报(理学版), 2015, 50(5): 82-87. (WANG Chunsheng, LI Yongming. Stability of neutral stochastic differential equations with some variable delays[J]. Journal of Shandong University (Natural Science), 2015, 50(5): 82-87.(in Chinese)
    [12] 王春生, 李永明. 三类不动点与一类随机动力系统的稳定性[J]. 控制理论与应用, 2017, 34(5): 677-682. (WANG Chunsheng, LI Yongming. Three kinds of fixed points and stability of stochastic dynamical systems[J]. Control Theory and Applications, 2017, 34(5): 677-682.(in Chinese) doi: 10.7641/CTA.2017.60240
    [13] 王春生, 李永明. Krasnoselskii不动点与中立型多变时滞随机动力系统的指数p稳定性[J]. 应用力学学报, 2019, 36(4): 901-905, 1000. (WANG Chunsheng, LI Yongming. Krasnoselskii fixed point and exponential p-stability of neutral stochastic dynamic systems with time-varying delays[J]. Chinese Journal of Applied Mechanics, 2019, 36(4): 901-905, 1000.(in Chinese)
    [14] 王春生. 中立型随机积分微分方程的稳定性[J]. 四川理工学院学报(自然科学版), 2011, 24(1): 81-84. (WANG Chunsheng. The stability of neutral stochastic integrodifferential equations[J]. Journal of Sichuan University of Science & Engineering (Natural Science Edition), 2011, 24(1): 81-84.(in Chinese)
    [15] 王春生. 随机微分方程稳定性的两种不动点方法的比较[J]. 四川理工学院学报(自然科学版), 2012, 25(4): 87-90. (WANG Chunsheng. Stability of stochastic differential equations: the two fixed points of comparison[J]. Journal of Sichuan University of Science & Engineering (Natural Science Edition), 2012, 25(4): 87-90.(in Chinese)
    [16] WU Meng, HUANG Nanjing, ZHAO Changwen. Fixed points and stability in neutural stochastic differential equations with variable delays[J]. Fixed Point Theory and Applications, 2008, 2008: 407352.
  • 加载中
计量
  • 文章访问数:  750
  • HTML全文浏览量:  284
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-23
  • 修回日期:  2021-03-30
  • 网络出版日期:  2021-12-07
  • 刊出日期:  2021-11-30

目录

    /

    返回文章
    返回