留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CFRP修复缺陷钢板应力解析模型

周道成 常利晨

周道成,常利晨. CFRP修复缺陷钢板应力解析模型 [J]. 应用数学和力学,2021,42(12):1276-1286 doi: 10.21656/1000-0887.420006
引用本文: 周道成,常利晨. CFRP修复缺陷钢板应力解析模型 [J]. 应用数学和力学,2021,42(12):1276-1286 doi: 10.21656/1000-0887.420006
ZHOU Daocheng, CHANG Lichen. A Stress Analysis Model for CFRP Repaired Defective Steel Plates[J]. Applied Mathematics and Mechanics, 2021, 42(12): 1276-1286. doi: 10.21656/1000-0887.420006
Citation: ZHOU Daocheng, CHANG Lichen. A Stress Analysis Model for CFRP Repaired Defective Steel Plates[J]. Applied Mathematics and Mechanics, 2021, 42(12): 1276-1286. doi: 10.21656/1000-0887.420006

CFRP修复缺陷钢板应力解析模型

doi: 10.21656/1000-0887.420006
详细信息
    作者简介:

    周道成(1976—),男,副教授,博士,硕士生导师(通讯作者. E-mail:zhoudc@dlut.edu.cn

  • 中图分类号: TU312+.1

A Stress Analysis Model for CFRP Repaired Defective Steel Plates

  • 摘要:

    在使用碳纤维复合材料(carbon fiber reinforced polymer, CFRP)修复钢结构腐蚀缺陷的修复方式中,CFRP应力及胶层应力是确定碳纤维修复结构承载能力的关键。基于平截面假设,得到弯矩作用下应力与应变分布;基于胶层剪切模型,得到胶层剪应力与CFRP和钢板位移间的关系;基于力的平衡,得到CFRP和钢板的应力关系。结合得到的各种材料之间关系,推导出轴力和弯矩联合作用状态下CFRP双面修复钢板的CFRP与胶层应力分布解析解。采用数值分析对CFRP双侧粘贴修复缺陷钢板进行分析,分析结果与解析结果具有一致性,同时获得了CFRP双侧粘贴修复缺陷钢板的应力分布特点,以及构件可能发生破坏的位置,为计算构件极限承载力提供了基础。

  • 图  1  修复有缺陷结构示意图

    Figure  1.  Schematic diagram of repairing the defective structure

    图  2  各层材料微元受力示意图

    Figure  2.  Schematic diagram of micro element stresses of each layer

    图  5  CFRP修复缺陷钢板CFRP应力云图

    注 为了解释图中的颜色,读者可以参考本文的电子网页版本,后同。

    Figure  5.  The CFRP stress nephogram of the defective steel plate repaired with CFRP

    图  4  CFRP修复有缺陷钢板结构尺寸图(单位:mm)

    Figure  4.  Structural dimensions of the defective steel plate repaired with CFRP (unit: mm)

    图  6  CFRP修复缺陷钢板胶层剪应力云图

    Figure  6.  The shear stress nephogram in the adhesive layer of the defective steel plate repaired with CFRP

    图  3  CFRP修复无缺陷钢板结构尺寸图 (单位:mm)

    Figure  3.  Structural dimensions of the defect-free steel plate repaired with CFRP (unit: mm)

    图  7  CFRP应力对比(受拉无缺陷无限宽钢板)

    Figure  7.  Comparison of CFRP stresses (an infinite-width defect-free steel plate in tension)

    图  8  胶层剪力对比(受拉无缺陷无限宽钢板)

    Figure  8.  Comparison of the adhesive layer’s shear stresses (an infinite-width defect-free steel plate in tension)

    图  9  CFRP应力对比(受弯拉无缺陷无限宽钢板)

    Figure  9.  Comparison of CFRP stresses (an infinite-width defect-free steel plate in tension and bending)

    图  10  胶层剪力对比(受弯拉无缺陷无限宽钢板)

    Figure  10.  Comparison of the adhesive layer’s shear stresses (an infinite-width defect-free steel plate in tension and bending)

    图  11  CFRP 应力对比(受拉有缺陷无限宽钢板)

    Figure  11.  Comparison of CFRP stresses (an infinite-width defective steel plate in tension)

    图  12  胶层剪力对比(受拉有缺陷无限宽钢板)

    Figure  12.  Comparison of the adhesive layer’s shear stresses (an infinite-width defective steel plate in tension)

    图  13  CFRP 应力对比(受弯拉有缺陷无限宽钢板)

    Figure  13.  Comparison of CFRP stresses (an infinite-width defective steel plate in tension and bending)

    图  14  胶层剪力对比(受弯拉有缺陷无限宽钢板)

    Figure  14.  Comparison of the adhesive layer’s shear stresses (an infinite width defective steel plate in tension and bending)

    表  1  CFRP修复结构有限元模型参数

    Table  1.   Finite element model parameters of the structure repaired with CFRP

    material typematerial parametermaterial propertyelement type
    steel$E = 200\;{\rm{ GPa}},\;G = 78.1\;{\rm{ GPa}},\;\mu = 0.28 $isotropic materialSolid185
    adhesive$E = 3.37\;{\rm{ GPa}},\;G = 1.3\;{\rm{ GPa}},\;\mu = 0.30 $isotropic materialSolid185
    ${E_x} = 242\;{\rm{ GPa}},\;{E_y} = {E_z} = 1.0\;{\rm{ GPa}} $
    CFRP ${G_{xy}} = {G_{xz}} = 5.0\;{\rm{ GPa}},\;{G_{yz}} = 2.5{\rm{ GPa}} $ orthotropic materialShell181
    ${\mu _{xy}} = {\mu _{xz}} = 0.307,\;{\mu _{yz}} = 0.35 $
    下载: 导出CSV
  • [1] 王振. 装配式钢结构建筑维护体系发展现状[J]. 砖瓦, 2016, 341(5): 47-49. (WANG Zhen. Development status of prefabricated steel structure wall system[J]. Brick-Tile, 2016, 341(5): 47-49.(in Chinese) doi: 10.3969/j.issn.1001-6945.2016.05.012
    [2] 潘正琪, 傅赟炜, 曹峰, 等. 建筑钢结构防腐技术综述[J]. 工程建设与设计, 2011(2): 67-68. (PAN Zhengqi, FU Yunwei, CAO Feng, et al. Building steel corrosion protection[J]. Construction & Design for Project, 2011(2): 67-68.(in Chinese) doi: 10.3969/j.issn.1007-9467.2011.02.018
    [3] 陈超. FRP在土木工程中应用的新进展[J]. 黑龙江科技信息, 2011(11): 283-284. (CHEN Chao. New progress of FRP application in civil engineering[J]. Heilongjiang Science and Technology Information, 2011(11): 283-284.(in Chinese)
    [4] BAKER A, ROSE L R F. Advances in the Bonded Composite Repair of Metallic Aircraft Structure[M]. Elsevier, 2002.
    [5] 彭福明, 张晓欣, 岳清瑞, 等. FRP加固金属拉伸构件的性能分析[J]. 工程力学, 2007, 24(3): 137, 189-192. (PENG Fuming, ZHANG Xiaoxin, YUE Qingrui, et al. Performance analysis of tensile metallic members strengthened with FRP[J]. Engineering Mechanics, 2007, 24(3): 137, 189-192.(in Chinese) doi: 10.3969/j.issn.1000-4750.2007.03.032
    [6] 郭凯特, 谢宗蕻, 李想, 等. 复合材料双面贴补修理拉伸解析分析模型及试验验证[J]. 复合材料学报, 2017, 34(10): 2194-2204. (GUO Kaite, XIE Zonghong, LI Xiang, et al. An analytical model and its validation for a composite double lap joints under unidirectional tension[J]. Acta Materiae Compositae Sinica, 2017, 34(10): 2194-2204.(in Chinese)
    [7] BOCCIARELLI M, COLOMBI P, FAVA G, et al. Prediction of debonding strength of tensile steel/CFRP joints using fracture mechanics and stress based criteria[J]. Engineering Fracture Mechanics, 2008, 76(2): 299-313.
    [8] 刘敏. 碳纤维增强复合材料加固钢结构的黏结界面应力分析[J]. 公路, 2013, 58(11): 201-203. (LIU Min. Analysis of bonding interface stress of steel structure strengthened with CFRP[J]. Highway, 2013, 58(11): 201-203.(in Chinese) doi: 10.3969/j.issn.0451-0712.2013.11.043
    [9] 张术宽. FRP加固含缺陷钢结构的破坏力学分析[D]. 博士学位论文. 广州: 华南理工大学, 2013

    ZHANG Shukuan. Failure mechanical analyses of cracked steel structures strengthened with FRP[D]. PhD Thesis. Guangzhou: South China University of Technology, 2013. (in Chinese)
    [10] DENG J, LEE M M K, MOY S S J. Stress analysis of steel beams reinforced with a bonded CFRP plate[J]. Composite Structures, 2003, 65(2): 205-215.
    [11] BENACHOUR A, BENYOUCEF S, TOUNSI A, et al. Interfacial stress analysis of steel beams reinforced with bonded prestressed FRP plate[J]. Engineering Structures, 2008, 30(11): 3305-3315. doi: 10.1016/j.engstruct.2008.05.007
    [12] 苏维国, 穆志韬, 朱做涛, 等. 金属裂纹板复合材料单面胶接修补结构应力分析[J]. 复合材料学报, 2014, 31(3): 772-780. (SU Weiguo, MU Zhitao, ZHU Zuotao, et al. Stress analysis of one-sided adhesively bonded composite repair of cracked metallic plate[J]. Acta Materiae Compositae Sinica, 2014, 31(3): 772-780.(in Chinese)
    [13] FAWZIA S, AL-MAHAIDI R, ZHAO X L. Experimental and finite element analysis of a double strap joint between steel plates and normal modulus CFRP[J]. Composite Structures, 2006, 75(1/4): 156-162.
    [14] SUNDARRAJA M C, SRIRAM P, GANESH PRABHU G, et al. Strengthening of hollow square sections under compression using FRP composites[J]. Advances in Materials Science and Engineering, 2014, 2014: 396597. doi: 10.1155/2014/396597
    [15] 黎文婧, 黄辉, 贾彬, 等. 碳纤维布-钢界面黏结性能试验研究[J]. 工业建筑, 2019, 49(3): 24-28, 91. (LI Wenjing, HUANG Hui, JIA Bin, et al. Research on the bond behavior of CFRP-steel interface[J]. Industrial Construction, 2019, 49(3): 24-28, 91.(in Chinese)
    [16] 龚美琦, 张春涛, 王汝恒. 碳纤维布加固腐蚀钢材力学性能试验研究[J]. 重庆理工大学学报(自然科学), 2021, 35(3): 106-111. (GONG Meiqi, ZHANG Chuntao, WANG Ruheng. Experimental study on mechanical properties of corroded steel strengthened with CFRP[J]. Journal of Chongqing University of Technology(Natural Science), 2021, 35(3): 106-111.(in Chinese)
    [17] 张盼, 许英杰, 汪海滨, 等. 基于粘弹性本构模型的双搭接胶结接头应力分析[J]. 应用数学和力学, 2015, 36(2): 159-166. (ZHANG Pan, XU Yingjie, WANG Haibin, et al. Stress analyses of double lap bonding joint using viscoelastic constitutive model[J]. Applied Mathematics and Mechanics, 2015, 36(2): 159-166.(in Chinese) doi: 10.3879/j.issn.1000-0887.2015.02.005
    [18] GARCÍA J A, CHIMINELLI A, GARCÍA B, et al. Characterization and material model definition of toughened adhesives for finite element analysis[J]. International Journal of Adhesion and Adhesives, 2010, 31(4): 182-192.
    [19] HESHMATI M, HAGHANI R, AL-EMRANI M, et al. On the strength prediction of adhesively bonded FRP-steel joints using cohesive zone modelling[J]. Theoretical and Applied Fracture Mechanics, 2018, 93: 64-78. doi: 10.1016/j.tafmec.2017.06.022
    [20] 吴妙生, 周祝林. 树脂基复合材料粘接的优化设计[J]. 应用数学和力学, 1997, 18(11): 1021-1025. (WU Miaosheng, ZHOU Zhulin. Optimum design of adhesive bonding of resin-base composites[J]. Applied Mathematics and Mechanics, 1997, 18(11): 1021-1025.(in Chinese)
    [21] 万云, 王振清, 周利民, 等. 表面机械研磨(SMAT)技术对玻璃纤维增强铝金属层板(GLARE)拉伸性能的影响[J]. 应用数学和力学, 2014, 35(10): 1107-1114. (WAN Yun, WANG Zhenqing, ZHOU Limin, et al. Effect of surface mechanical attrition treatment (SMAT) on the tensile performance of fibre reinforced aluminium laminates[J]. Applied Mathematics and Mechanics, 2014, 35(10): 1107-1114.(in Chinese) doi: 10.3879/j.issn.1000-0887.2014.10.005
    [22] 许明阳, 殷晨波, 陈曦. 碳纤维布胶接修复含裂纹钢管仿真分析[J]. 现代制造工程, 2021(1): 142-146. (XU Mingyang, YIN Chenbo, CHEN Xi. Simulation analysis of steel tube with crack after CFRP bonded repair[J]. Modern Manufacturing Engineering, 2021(1): 142-146.(in Chinese)
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  474
  • HTML全文浏览量:  313
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-06
  • 录用日期:  2021-06-04
  • 修回日期:  2021-06-19
  • 网络出版日期:  2021-11-15
  • 刊出日期:  2021-12-01

目录

    /

    返回文章
    返回