留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同索力斜拉索的主共振瞬时相频特性

邓正科 孙测世 杨汝东

邓正科,孙测世,杨汝东. 不同索力斜拉索的主共振瞬时相频特性 [J]. 应用数学和力学,2021,42(11):1126-1135 doi: 10.21656/1000-0887.420033
引用本文: 邓正科,孙测世,杨汝东. 不同索力斜拉索的主共振瞬时相频特性 [J]. 应用数学和力学,2021,42(11):1126-1135 doi: 10.21656/1000-0887.420033
DENG Zhengke, SUN Ceshi, YANG Rudong. Transient Primary Resonance Phase-Frequency Characteristics of Stay Cables With Different Tensions[J]. Applied Mathematics and Mechanics, 2021, 42(11): 1126-1135. doi: 10.21656/1000-0887.420033
Citation: DENG Zhengke, SUN Ceshi, YANG Rudong. Transient Primary Resonance Phase-Frequency Characteristics of Stay Cables With Different Tensions[J]. Applied Mathematics and Mechanics, 2021, 42(11): 1126-1135. doi: 10.21656/1000-0887.420033

不同索力斜拉索的主共振瞬时相频特性

doi: 10.21656/1000-0887.420033
基金项目: 国家自然科学基金(51808085)
详细信息
    作者简介:

    邓正科(1994—),男,硕士生(E-mail:1550487720@qq.com)

    孙测世(1985—),男,副教授,博士,硕士生导师(通讯作者. E-mail:suncs@hnu.edu.cn)

    杨汝东(1995—),男,硕士生(E-mail:1393977428@qq.com)

  • 中图分类号: U448.27; O322

Transient Primary Resonance Phase-Frequency Characteristics of Stay Cables With Different Tensions

  • 摘要: 考虑拉索垂度及几何非线性,研究了不同索力拉索的瞬时相频特性。利用斜拉索面内分布激励下的运动控制方程,采用多尺度法对微分方程进行摄动求解,分别得到面内、外主共振响应的近似解析式,再采用Hilbert变换得到响应与激励的瞬时相位差及其幅值。研究了不同索力下,响应与激励的瞬时相位差的变化规律及其原因。研究表明:面外主共振响应与激励间保持恒定的相位差,而面内响应与激励的瞬时相位差与索弹性参数和垂度等有关,微小的索力变化可能导致瞬时相频特性的明显改变。主要原因是面内响应的近似解中存在两倍频项和漂移项,前者使响应瞬时相位在单个周期内出现两次正负交替,后者决定面内响应与激励瞬时相位差的最大值及其变化规律。
  • 图  1  分布外激励下斜拉索振动简化模型

    Figure  1.  Simplified model of vibration of cable under distributed external excitation

    图  2  响应时程曲线

    Figure  2.  Response time history curves

    图  3  频谱图

    Figure  3.  Spectrum diagrams under different cable tensions

    图  4  瞬时相位差时程曲线

    Figure  4.  Time history curves of the transient phase difference

    图  5  pmaxH-Ωv平面投影

    Figure  5.  Projection of pmax in the H-Ωv plane

    图  6  pmax-Ωv曲线

    Figure  6.  The pmaxv curves

    图  7  pmax-H曲线(Ωv=1)

    Figure  7.  The pmax-H curve(Ωv=1)

    图  8  复平面投影曲线

    Figure  8.  Projection curves in the complex plane

    图  9  AvD复平面示意图

    Figure  9.  Illustration of AvD in the complex plane

    图  10  AvD$\beta $的变化曲线

    Figure  10.  Curves of AvD and $\; \beta$

    表  1  Normandie桥索参数

    Table  1.   Cable parameters of the Normandie bridge

    l/mm/(kg·m−1)H/kNA/m2E/Paθ/(°)C
    4401368 0001.53×10−21.9×101117.50.001
    下载: 导出CSV
  • [1] IRVINE H M. Cable Structures[M]. Cambridge: the MIT Press, 1981: 1-152.
    [2] 康厚军, 郭铁丁, 赵跃宇. 大跨度斜拉桥非线性振动模型与理论研究进展[J]. 力学学报, 2016, 48 (3): 519-535. (KANG Houjun, GUO Tieding, ZHAO Yueyu. Review on nonlinear vibration and modeling of large span cable-stayed bridge[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48 (3): 519-535.(in Chinese) doi: 10.6052/0459-1879-15-436
    [3] 付英. 基础激励下桥梁斜拉索的非线性振动[J]. 动力学与控制学报, 2010, 8 (1): 57-61. (FU Ying. Nonlinear vibration of cables in cable-stayed bridge under foundation excitation[J]. Journal of Dynamics and Control, 2010, 8 (1): 57-61.(in Chinese) doi: 10.3969/j.issn.1672-6553.2010.01.012
    [4] 吴娟, 钱有华. 一类弦-梁耦合非线性振动系统的动力学数值模拟研究[J]. 动力学与控制学报, 2018, 16 (5): 403-410. (WU Juan, QIAN Youhua. Numerical simulation research on dynamics of a string-beam coupled nonlinear vibration system[J]. Journal of Dynamics and Control, 2018, 16 (5): 403-410.(in Chinese) doi: 10.6052/1672-6553-2018-020
    [5] 丛云跃, 康厚军, 郭铁丁, 等. CFRP索斜拉桥面内自由振动的多索梁模型及模态分析[J]. 动力学与控制学报, 2017, 15 (6): 494-504. (CONG Yunyue, KANG Houjun, GUO Tieding, et al. A multiple cable-beam model and modal analysis on in-plane free vibration of cable-stayed bridge with CFRP cables[J]. Journal of Dynamics and Control, 2017, 15 (6): 494-504.(in Chinese)
    [6] NI Y Q, WANG X Y, CHEN Z Q, et al. Field observations of rain-wind-induced cable vibration in cable-stayed Dongting Lake Bridge[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2007, 95(5): 303-328. doi: 10.1016/j.jweia.2006.07.001
    [7] MATSUMOTO M, SHIRAISHI N, SHIRATO H. Rain-wind induced vibration of cables of cable-stayed bridges[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1992, 43(1/3): 2011-2022. doi: 10.1016/0167-6105(92)90628-N
    [8] SAVOR Z, RADIC J, HRELJA G. Cable vibrations at Dubrovnik bridge[J]. Bridge Structures, 2006, 2(2): 97-106. doi: 10.1080/15732480600855800
    [9] 符旭晨, 周岱, 吴筑海. 斜拉索的风振与减振[J]. 振动与冲击, 2004, 23 (3): 29-32. (FU Xuchen, ZHOU Dai, WU Zhuhai. Study on wind induced vibration and vibration reduction of stayed cables[J]. Journal of Vibration and Shock, 2004, 23 (3): 29-32.(in Chinese) doi: 10.3969/j.issn.1000-3835.2004.03.008
    [10] REGA G, ALAGGIO R, BENEDETTINI F. Experimental investigation of the nonlinear response of a hanging cable, part P: local analysis[J]. Nonlinear Dynamics, 1997, 14(2): 89-117. doi: 10.1023/A:1008246504104
    [11] ZHAO Y, HUANG C, CHEN L, et al. Nonlinear vibration behaviors of suspended cables under two-frequency excitation with temperature effects[J]. Journal of Sound and Vibration. 2018, 416: 279-294.
    [12] WANG L H, ZHAO Y Y. Nonlinear interactions and chaotic dynamics of suspended cables with three-to-one internal resonances[J]. International Journal of Solids and Structures, 2006, 43(25): 7800-7819.
    [13] BOSSENS F, PREUMONT A. Active tendon control of cable-stayed bridges: a large-scale demonstration[J]. Earthquake Engineering & Structural Dynamics, 2001, 30(7): 961-979.
    [14] 孙测世. 大跨度斜拉桥非线性振动试验研究[D]. 博士学位论文. 长沙: 湖南大学, 2015.

    SUN Ceshi. Experimental study of nonlinear vibrations of long-span cable-stayed bridge[D]. PhD Thesis. Changsha: Hunan University, 2015. (in Chinese)
    [15] 赵珧冰, 林恒辉, 黄超辉, 等. 温度场中悬索受多频激励组合联合共振响应研究[J]. 振动与冲击, 2019, 38 (3): 215-221. (ZHAO Yaobing, LIN Henghui, HUANG Chaohui, et al. Combined joint resonance responses of suspended cable subject to multi-frequency excitation in thermal environment[J]. Journal of Vibration and Shock, 2019, 38 (3): 215-221.(in Chinese)
    [16] PERLIKOWSKI P, KAPITANIAK M, CZOLCZYNSKI K, et al. Chaos in coupled clocks[J]. International Journal of Bifurcation and Chaos, 2012, 22(12): 1250288. doi: 10.1142/S0218127412502884
    [17] WU Y, WANG N, LI L, et al. Anti-phase synchronization of two coupled mechanical metronomes[J]. Chaos: an Interdisciplinary Journal of Nonlinear Science, 2012, 22(2): 023146. doi: 10.1063/1.4729456
    [18] CZOLCZYNSKI K, PERLIKOWSKI P, STEFANSKI A, et al. Synchronization of the self-excited pendula suspended on the vertically displacing beam[J]. Communications in Nonlinear Science and Numerical Simulation, 2013, 18(2): 386-400. doi: 10.1016/j.cnsns.2012.07.007
    [19] KAPITANIAK M, PERLIKOWSKI P, KAPITANIAK T. Synchronous motion of two vertically excited planar elastic pendula[J]. Communications in Nonlinear Science and Numerical Simulation, 2013, 18(8): 2088-2096. doi: 10.1016/j.cnsns.2012.12.030
    [20] WANG L, ZHAO Y. Large amplitude motion mechanism and non-planar vibration character of stay cables subject to the support motions[J]. Journal of Sound and Vibration, 2009, 327(1/2): 121-133.
    [21] SUN C, ZHAO Y, WANG Z, et al. Effects of longitudinal girder vibration on non-linear cable responses in cable-stayed bridges[J]. European Journal of Environmental and Civil Engineering, 2015, 21(1): 1-14.
    [22] WARNITCHAI P, FUJINO Y, SUSUMPOW T. A non-linear dynamic model for cables and its application to a cable-structure system[J]. Journal of Sound and Vibration, 1995, 187(4): 695-712.
    [23] WU Q, TAKAHASHI K, NAKAMURA S. Formulae for frequencies and modes of in-plane vibrations of small-sag inclined cables[J]. Journal of Sound and Vibration, 2005, 279(3/5): 1155-1169.
    [24] KANG H J, ZHU H P, ZHAO Y Y, et al. In-plane non-linear dynamics of the stay cables[J]. Nonlinear Dynamics, 2013, 73(3): 1385-1398. doi: 10.1007/s11071-013-0871-2
    [25] 陈水生, 孙炳楠, 胡隽. 斜拉索受轴向激励引起的面内参数振动分析[J]. 振动工程学报, 2002, 15(2): 144-150. (CHEN Shuisheng, SUN Bingnan, HU Jun. Analysis of stayed-cable vibration caused by axial excitation[J]. Journal of Vibration Engineering, 2002, 15(2): 144-150.(in Chinese) doi: 10.3969/j.issn.1004-4523.2002.02.005
    [26] 徐夷鹏, 任志明, 李振春, 等. 一阶近似瞬时频率时间域声波全波形反演[J]. 石油地球物理勘探, 2020, 55(5): 1029-1038. (XU Yipeng, REN Zhiming, LI Zhenchun, et al. Full waveform inversion of time-domain acoustic wave based on first-order approximate instantaneous frequency[J]. Oil Geophysical Prospecting, 2020, 55(5): 1029-1038.(in Chinese)
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  654
  • HTML全文浏览量:  271
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-28
  • 修回日期:  2021-05-09
  • 网络出版日期:  2021-12-07
  • 刊出日期:  2021-11-30

目录

    /

    返回文章
    返回