[2]TARASOV V E. Fractional integro-differential equations for electromagnetic waves in dielectric media[J].Theoretical and Mathematical Physics,2009,158(3): 355-359.
|
杨柱中, 周激流, 晏祥玉, 等. 基于分数阶微分的图像增强[J].计算机辅助设计与图形学报, 2008,20(3): 343-348.(YANG Zhuzhong, ZHOU Jiliu, YAN Xiangyu, et al. Image enhancement based on fractional differentials[J].Journal of Computer-Aided Design & Computer Grap,2008,20(3): 343-348.(in Chinese))
|
[3]黄飞, 马永斌.移动热源作用下基于分数阶应变的三维弹性体热-机响应[J].应用数学和力学, 2021,42(4): 373-384.(HUANG Fei, MA Yongbin. Thermomechanical responses of 3D media under moving heat sources based on fractional-order strains[J].Applied Mathematics and Mechanics,2021,42(4): 373-384.(in Chinese))
|
[4]XU H. Analytical approximations for a population growth model with fractional order[J].Communications in Nonlinear Science and Numerical Simulation,2009,14(5): 1978-1983.
|
[5]TIEN D N. Fractional stochastic differential equations with applications to finance[J].Journal of Mathematical Analysis and Applications,2013,397(1): 334-348.
|
[6]KHODABIN M, MALEKNEJAD K, ASGARI M. Numerical solution of a stochastic population growth model in a closed system[J].Advances in Difference Equations,2013,2013(1): 1-9.
|
[7]GUASONI P. No arbitrage under transaction costs, with fractional Brownian motion and beyond[J].Mathematical Finance,2006,16(3): 569-582.
|
[8]徐昌进, 段振华. 分数阶混沌金融模型的时滞反馈控制策略[J].应用数学和力学, 2020,41(12): 1395-1402.(XU Changjin, DUAN Zhenhua. A delayed feedback control method for fractional-order chaotic financial models[J].Applied Mathematics and Mechanics,2020,41(12): 1395-1402.(in Chinese))
|
[9]PEDJEU J C, LADDE G S. Stochastic fractional differential equations: modeling, method and analysis[J].Chaos, Solitons & Fractals,2012,45(3): 279-293.
|
[10]LIU F W, ANH V, TURNER I. Numerical solution of the space fractional Fokker-Planck equation[J].Journal of Computational and Applied Mathematics,2004,166(1): 209-219.
|
[11]ROBERTO G. Numerical solution of fractional differential equations: a survey and a software tutorial[J].Mathematics,2018,6(2): 16. DOI: 10.3390/math6020016.
|
[12]LIANG H, YANG Z W, GAO J F. Strong superconvergence of the Euler-Maruyama method for linear stochastic Volterra integral equations[J].Journal of Computational and Applied Mathematics,2017,317: 447-457.
|
[13]DOAN T S, HUONG P T, KLOEDEN P E, et al. Euler-Maruyama scheme for Caputo stochastic fractional differential equations[J].Journal of Computational and Applied Mathematics,2020,380: 112989.
|
[14]XIAO A G, DAI X J, BU W P. Well-posedness and EM approximation for nonlinear singular stochastic fractional integro-differential equations[R/OL].2019. [2021-04-26].https://arxiv.org/pdf/1901.10333.pdf.
|
[15]AGHAJANI A, YAGHOUB J, TRUJILLO J. On the existence of solutions of fractional integro-differential equations[J].Fractional Calculus and Applied Analysis,2012,15(1): 44-69.
|
[16]DIETHELM K, FORD N J. Analysis of fractional differential equations[J].Journal of Mathematical Analysis and Applications,2002,265(2): 229-248.
|
[17]MAO X. Stochastic Differential Equations and Applications[M].Woodhead Publishing, 2008.
|
[18]PRATO D G, JERZY Z. Stochastic Equations in Infinite Dimensions[M].Cambridge: Cambridge University Press, 2010.
|
[19]CAO W R, ZHANG Z Q, KARNIADAKIS G E. Numerical methods for stochastic delay differential equations via the wong-zakai approximation[J].SIAM Journal on Scientific Computing,2015,37(1): A295-A318.
|