留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于自适应控制的四元数时滞神经网络的有限时间同步

赵玮 任凤丽

赵玮,任凤丽. 基于自适应控制的四元数时滞神经网络的有限时间同步 [J]. 应用数学和力学,2022,43(1):94-103 doi: 10.21656/1000-0887.420068
引用本文: 赵玮,任凤丽. 基于自适应控制的四元数时滞神经网络的有限时间同步 [J]. 应用数学和力学,2022,43(1):94-103 doi: 10.21656/1000-0887.420068
ZHAO Wei, REN Fengli. Finite Time Adaptive Synchronization of Quaternion-Value Neural Networks With Time Delays[J]. Applied Mathematics and Mechanics, 2022, 43(1): 94-103. doi: 10.21656/1000-0887.420068
Citation: ZHAO Wei, REN Fengli. Finite Time Adaptive Synchronization of Quaternion-Value Neural Networks With Time Delays[J]. Applied Mathematics and Mechanics, 2022, 43(1): 94-103. doi: 10.21656/1000-0887.420068

基于自适应控制的四元数时滞神经网络的有限时间同步

doi: 10.21656/1000-0887.420068
基金项目: 国家自然科学基金 (61104031)
详细信息
    作者简介:

    赵玮(1995—),男,硕士(E-mail: wzhao960@163.com)

    任凤丽(1978—),女,副教授,博士(通讯作者. E-mail: flren@nuaa.edu.cn)

  • 中图分类号: O357.41

Finite Time Adaptive Synchronization of Quaternion-Value Neural Networks With Time Delays

  • 摘要:

    文章主要研究了自适应控制下四元数时滞神经网络的有限时间完全同步,通过设计一组有效新颖的自适应控制器,使得主从系统实现有限时间同步,并计算出停息时间的理论估计。利用Lyapunov函数方法和不等式技巧,给出了四元数时滞神经网络主从系统有限时间同步的充分条件。最后,通过数值仿真验证了所得理论结果的有效性。

  • 图  1  误差状态的实、虚部运动轨迹

    Figure  1.  The trajectories of the real,imaginary parts of errors

    图  2  自适应增益的实、虚部运动轨迹

    Figure  2.  The trajectories of the real,imaginary parts of adaptive gain

  • [1] HE W L, LUO T, TANG Y, et al. Secure communication based on quantized synchronization of chaotic neural networks under an event-triggered strategy[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 31(9): 1-12.
    [2] LU W L, CHEN T P. QUAD-condition, synchronization, consensus of multiagents, and anti-synchronization of complex networks[J]. IEEE Transactions on Cybernetics, 2019, 99: 1-5.
    [3] LU W L, CHEN T P. New approach to synchronization analysis of linearly coupled ordinary differential systems[J]. Physica D: Nonlinear Phenomena, 2006, 213(2): 214-230. doi: 10.1016/j.physd.2005.11.009
    [4] YU W W, DELELLIS P, CHEN G R, et al. Distributed adaptive control of synchronization in complex networks[J]. IEEE Transactions on Automatic Control, 2012, 57(8): 2153-2158. doi: 10.1109/TAC.2012.2183190
    [5] CHEN X F, SONG Q K, LI Z S, et al. Stability analysis of continuous-time and discrete-time quaternion-valued neural networks with linear threshold neurons[J]. IEEE Transactions on Neural Networks Learning Systems, 2017, 29(7): 2769-2781.
    [6] CHEN X F, SONG Q K. State estimation for quaternion-valued neural networks with multiple time delays[J]. IEEE Transactions on Systems, Man, and Systems, 2019, 49(11): 2278-2287. doi: 10.1109/TSMC.2017.2776940
    [7] WEI R Y, CAO J D. Fixed-time synchronization of quaternion-valued memristive neural networks with time delays[J]. Neural Networks, 2019, 113: 1-10. doi: 10.1016/j.neunet.2019.01.014
    [8] LIU Y, ZHANG D D, LOU J G, et al. Stability analysis of quaternion-valued neural networks: decomposition and direct approaches[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29: 4201-4211. doi: 10.1109/TNNLS.2017.2755697
    [9] LIU Y, ZHANG D D, LU J Q, et al. Global μ-stability criteria for quaternion-valued neural networks with unbounded time-varying delays[J]. Information Sciences, 2016, 360: 273-288. doi: 10.1016/j.ins.2016.04.033
    [10] SONG Q K, CHEN X F. Multistability analysis of quaternion-valued neural networks with time delays[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(11): 5430-5540. doi: 10.1109/TNNLS.2018.2801297
    [11] CORTÉS J. Finite-time convergent gradient flows with applications to network consensus[J]. Automatica, 2006, 42(11): 1993-2000. doi: 10.1016/j.automatica.2006.06.015
    [12] POLYAKOV A, EFIMOV D, PERRUQUETTI W. Finite-time and fixed-time stabilization: implicit Lyapunov function approach[J]. Automatica, 2015, 51: 332-340. doi: 10.1016/j.automatica.2014.10.082
    [13] LU W L, LIU X W, CHEN T P. A note on finite-time and fixed-time stability[J]. Neural Networks, 2016, 81: 11-15. doi: 10.1016/j.neunet.2016.04.011
    [14] HUI Q, HADDAD W M, BHAT S P. Finite-time semistability, Filippov systems, and consensus protocols for nonlinear dynamical networks with switching topologies[J]. Nonlinear Analysis: Hybrid Systems, 2010, 4(3): 557-573. doi: 10.1016/j.nahs.2010.03.002
    [15] WU L L, LIU K X, LÜ J H, et al. Finite-time adaptive stability of gene regulatory networks[J]. Neurocomputing, 2019, 338: 222-232. doi: 10.1016/j.neucom.2019.02.011
    [16] TIAN B L, CUI J, LU H C, et al. Adaptive finite-time attitude tracking of quadrotors with experiments and comparisons[J]. IEEE Transactions on Industrial Electronics, 2019, 66(12): 9428-9438. doi: 10.1109/TIE.2019.2892698
    [17] LIU X Y, HO D W C, SONG Q, et al. Finite/fixed-time pinning synchronization of complex networks with stochastic disturbances[J]. IEEE Transactions on Cybernetics, 2019, 49(6): 2398-2403. doi: 10.1109/TCYB.2018.2821119
    [18] ZHAO Z L, JIANG Z P, LIU T F, et al. Global finite-time output-feedback stabilization of nonlinear systems under relaxed conditions[J]. IEEE Transactions on Automatic Control, 2021, 66(9): 4259-4266. doi: 10.1109/TAC.2020.3030857
    [19] FILIPPOV A F. Differential Equations With Discontinuous Right-Hand Sides[M]. Dordrecht: Springer, 1988.
    [20] HE J J, LIN Y Q, GE M F, et al. Adaptive finite-time cluster synchronization of neutral-type coupled neural networks with mixed delays[J]. Neurocomputing, 2020, 384: 11-20. doi: 10.1016/j.neucom.2019.11.046
    [21] HARDY G, LITTLEWOOD J, POLYA G. Inequalities[M]. Cambridge: Cambridge University Press, 1952.
  • 加载中
图(2)
计量
  • 文章访问数:  986
  • HTML全文浏览量:  523
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-18
  • 修回日期:  2021-09-15
  • 网络出版日期:  2021-11-15
  • 刊出日期:  2022-01-01

目录

    /

    返回文章
    返回