留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三物种竞争-扩散系统双稳行波解的波速符号

郑景盼

郑景盼. 三物种竞争-扩散系统双稳行波解的波速符号[J]. 应用数学和力学, 2021, 42(12): 1296-1305. doi: 10.21656/1000-0887.420093
引用本文: 郑景盼. 三物种竞争-扩散系统双稳行波解的波速符号[J]. 应用数学和力学, 2021, 42(12): 1296-1305. doi: 10.21656/1000-0887.420093
ZHENG Jingpan. The Wave Speed Signs for Bistable Traveling Wave Solutions in 3-Species Competition-Diffusion Systems[J]. Applied Mathematics and Mechanics, 2021, 42(12): 1296-1305. doi: 10.21656/1000-0887.420093
Citation: ZHENG Jingpan. The Wave Speed Signs for Bistable Traveling Wave Solutions in 3-Species Competition-Diffusion Systems[J]. Applied Mathematics and Mechanics, 2021, 42(12): 1296-1305. doi: 10.21656/1000-0887.420093

三物种竞争-扩散系统双稳行波解的波速符号

doi: 10.21656/1000-0887.420093
详细信息
    作者简介:

    郑景盼(1993—), 男, 硕士(E-mail: 1695886501@qq.com).

    通讯作者:

    郑景盼(1993—), 男, 硕士(E-mail: 1695886501@qq.com).

  • 中图分类号: O175.14

The Wave Speed Signs for Bistable Traveling Wave Solutions in 3-Species Competition-Diffusion Systems

  • 摘要: 在双稳竞争-扩散模型中,由于行波解的波速符号可以预测哪些物种更具有优势并最终占据整个栖息地,因此研究行波解的波速符号具有重要的生物学意义.首先将三物种种群Lotka-Volterra竞争-扩散系统转化为合作系统.然后运用比较原理得到双稳波速与波廓方程特定上下解波速的比较原理.最后根据比较原理以及构造合适的上下解,得到一些判断双稳行波解波速符号的充分条件.这些结果能够更好地预测和控制生物种群的竞争结果.
  • GUO J S, LIN Y C. The sign of the wave speed for the Lotka-Volterra competition-diffusion system[J].Communications on Pure and Applied Analysis,2013,12(5): 2083-2090.
    [2]MA M, HUANG Z, OU C. Speed of the traveling wave for the bistable Lotka-Volterra competition model[J].Nonlinearity,2019,32(9): 3143-3162.
    [3]MA M, ZHANG Q, YUE J, et al. Bistable wave speed of the Lotka-Volterra competition model[J].Journal of Biological Dynamics,2020,14(1): 608-620.
    [4]WANG H, OU C. Propagation speed of the bistable traveling wave to the Lotka-Volterra competition system in a periodic habitat[J].Journal of Nonlinear Science,2020,30: 3129-3159.
    [5]WANG H, OU C. Propagation direction of the traveling wave for the Lotka-Volterra competitive lattice system[J].Journal of Dynamics and Differential Equation,2021,33: 1153-1174.
    [6]马满军, 岳缘希, OU Chunhua. 具非局部扩散Lotka-Volterra系统的双稳波速[J].中国科学: 数学, 2021,51: 1-16.(MA Manjun, YUE Yuanxi, OU Chunhua. Bistable wave velocities with nonlocally diffused Lotka-Volterra systems[J].Science China: Mathematics,2021,51: 1-16.(in Chinese))
    [7]张国宝, 何娟. 时滞非局部扩散方程的双稳波速[J].西北师范大学学报(自然科学版), 2021,57(3): 7-12.(ZHANG Guobao, HE Juan. Bistable wave speed for delayed nonlocal dispersal equations[J].Journal of Northwest Normal University(Natural Science),2021,57(3): 7-12.(in Chinese))
    [8]GUO J S, NAKAMURA K I, OGIWARA T, et al. The sign of traveling wave speed in bistable dynamics[J].Discrete and Continuous Dynamical Systems,2020,40(6): 3451-3466.
    [9]CHANG C H. The stability of traveling wave solutions for a diffusive competition system of three species[J].Journal of Mathematical Analysis and Applications,2018,459(1): 564-576.
    [10]CHEN X F. Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal evolution equations[J].Advances in Differential Equations,1997,2(1): 125-160.
    [11] CHEN G S, WU S L, HSU S H. Stability of traveling wavefronts for a discrete diffusive competition system with three species[J]. Journal of Mathematical Analysis and Applications,2019,474(2): 909-930.
    [12]FANG J, ZHAO X Q. Bistable traveling wave for monotone semiflows with applications[J].Journal of the European Mathematical Society,2015,17: 2243-2288.
    [13]GARDNER R A. Existence and stability of travelling wave solutions of competition models: a degree theoretic approach[J].Journal of Differential Equations,1982,44(3): 343-364.
    [14]GUO J S, WU C C. The existence of traveling wave solutions for a bistable three-component lattice dynamical system[J].Journal of Differential Equations,2016,260(12): 1445-1455.
    [15]SU T, ZHANG G B. Stability of traveling wavefronts for a three-component Lotka-Volterra competition system on a lattice[J].Electronic Journal of Differential Equations,2018,57: 1-16.
    [16]VOLPERT A I, VOLPERT V A, VOLPERT V A. Traveling Wave Solutions of Parabolic Systems[M].American Mathematical Society, 1994.
    [17]WU C C. Existence of traveling wavefront for discrete bistable competition model[J]. Discrete and Continuous Dynamical Systems(Series B),2013,16: 973-984.
    [18]MA M, YUE J, OU C. Propagation direction of the bistable travelling wavefront for delayed non-local reaction diffusion equations[J].Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences,2019,475(2223): 20180898.
  • 加载中
计量
  • 文章访问数:  763
  • HTML全文浏览量:  168
  • PDF下载量:  109
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-13
  • 修回日期:  2021-06-02
  • 网络出版日期:  2021-12-31

目录

    /

    返回文章
    返回