留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有空变系数源项的半线性Moore-Gibson-Thompson方程全局解的非存在性

欧阳柏平

欧阳柏平. 具有空变系数源项的半线性Moore-Gibson-Thompson方程全局解的非存在性 [J]. 应用数学和力学,2022,43(3):353-362 doi: 10.21656/1000-0887.420094
引用本文: 欧阳柏平. 具有空变系数源项的半线性Moore-Gibson-Thompson方程全局解的非存在性 [J]. 应用数学和力学,2022,43(3):353-362 doi: 10.21656/1000-0887.420094
OUYANG Baiping. Nonexistence of Global Solutions to Semilinear Moore-Gibson-Thompson Equations With Space-Dependent Coefficients and Source Terms[J]. Applied Mathematics and Mechanics, 2022, 43(3): 353-362. doi: 10.21656/1000-0887.420094
Citation: OUYANG Baiping. Nonexistence of Global Solutions to Semilinear Moore-Gibson-Thompson Equations With Space-Dependent Coefficients and Source Terms[J]. Applied Mathematics and Mechanics, 2022, 43(3): 353-362. doi: 10.21656/1000-0887.420094

具有空变系数源项的半线性Moore-Gibson-Thompson方程全局解的非存在性

doi: 10.21656/1000-0887.420094
基金项目: 国家自然科学基金 (11371175);广东省普通高校创新团队项目(2020WCXTD008);广州市哲学社会科学发展“十三五”规划课题(2019GZGJ209)
详细信息
    作者简介:

    欧阳柏平(1979—),男,讲师,硕士(E-mail:oytengfei79@tom.com)

  • 中图分类号: O175.4

Nonexistence of Global Solutions to Semilinear Moore-Gibson-Thompson Equations With Space-Dependent Coefficients and Source Terms

  • 摘要:

    研究了具有空变系数源项的半线性Moore-Gibson-Thompson(MGT)方程Cauchy问题解的爆破现象。在次临界情形下,通过选择合适的能量泛函和测试函数,运用迭代方法和一些微分不等式技巧,得到了其Cauchy问题解的非全局存在性。进一步导出了其Cauchy问题解的生命跨度的上界估计。

  • [1] ALVES M O, CAIXETA A H, SILVA M A J, et al. Moore-Gibson-Thompson equation with memory in a history framework: a semigroup approach[J]. Zeitschrift fur Angewandte Mathematik und Physik, 2018, 69(4): 106. doi: 10.1007/s00033-018-0999-5
    [2] CAIXETA A H, LASIECKA I, DOMINGOS CAVALCANTI V N. On long time behavior of Moore-Gibson-Thompson equation with molecular relaxation[J]. Evolution Equations and Control Theory, 2016, 5(4): 661-676. doi: 10.3934/eect.2016024
    [3] DELL’ORO F, LASIECKA I, PATA V. A note on the Moore-Gibson-Thompson equation with memory of type Ⅱ[J]. Journal of Evolution Equations, 2020, 20(4): 1251-1268. doi: 10.1007/s00028-019-00554-0
    [4] DELL’ORO F, LASIECKA I, PATA V. The Moore-Gibson-Thompson equation with memory in the critical case[J]. Journal of Differential Equations, 2016, 261(7): 4188-4222. doi: 10.1016/j.jde.2016.06.025
    [5] DELL’ORO F, PATA V. On the Moore-Gibson-Thompson equation and its relation to linear viscoelasticity[J]. Applied Mathematics and Optimization, 2017, 76(3): 641-655. doi: 10.1007/s00245-016-9365-1
    [6] LASIECKA I. Global solvability of Moore-Gibson-Thompson equation with memory arising in nonlinear acoustics[J]. Journal of Evolution Equations, 2017, 17(1): 411-441. doi: 10.1007/s00028-016-0353-3
    [7] LASIECKA I, WANG X. Moore-Gibson-Thompson equation with memory, part Ⅰ: exponential decay of energy[J]. Zeitschrift fur Angewandte Mathematik und Physik, 2016, 67(2). DOI: 10.1007/s00033-015-0597-8.
    [8] PELLICER M, SAID-HOUARI B. Wellposedness and decay rates for the Cauchy problem of the Moore-Gibson-Thompson equation arising in high intensity ultrasound[J]. Applied Mathematics and Optimization, 2019, 80(2): 447-478. doi: 10.1007/s00245-017-9471-8
    [9] PELLICER M, SOLÁ-MORALES J. Optimal scalar products in the Moore-Gibson-Thompson equation[J]. Evolution Equations and Control Theory, 2019, 8(1): 203-220. doi: 10.3934/eect.2019011
    [10] KALTENBACHER B, MARCHAND R. Well-posedness and exponential decay rates for the Moore-Gibson-Thompson equation arising in high intensity ultrasound[J]. Control and Cybernetics, 2011, 40(4): 971-988.
    [11] LINDBLAD H, SOGGE C D. Long-time existence for small amplitude semilinear wave equations[J]. American Journal of Mathematics, 1996, 118(5): 1047-1135. doi: 10.1353/ajm.1996.0042
    [12] TAKAMURA H, WAKASA K. The sharp upper bound of the lifespan of solutions to critical semilinear wave equations in high dimensions[J]. Journal of Differential Equations, 2011, 251(4/5): 1157-1171. doi: 10.1016/j.jde.2011.03.024
    [13] ZHOU Y. Cauchy problem for semilinear wave equations in four space dimensions with small initial data[J]. Journal of Partial Differential Equations, 1995, 8(2): 135-144.
    [14] ZHOU Y. Blow up of solutions to semilinear wave equations with critical exponent in high dimensions[J]. Chinese Annals of Mathematics (Series B), 2007, 28(2): 205-212. doi: 10.1007/s11401-005-0205-x
    [15] DI POMPONIO S, GEORGIEV V. Life-span of subcritical semilinear wave equation[J]. Asymptotic Analysis, 2001, 28(2): 91-114.
    [16] 王虎生, 孙海霞. 一类非线性项的二维波动方程解的生命跨度研究[J]. 应用数学, 2020, 33(3): 620-633. (WANG Husheng, SUN Haixia. The life span of classical solutions to nonlinear wave equations with weighted function in two space dimensions[J]. Mathematica Applicata, 2020, 33(3): 620-633.(in Chinese)
    [17] CHEN W, PALMIERI A. Nonexistence of global solutions for the semilinear Moore-Gibson-Thompson equation in the conservative case[J]. Discrete and Continuous Dynamical Systems, 2020, 40(9): 5513-5540. doi: 10.3934/dcds.2020236
    [18] CHEN W, PALMIERI A. A blow-up result for the semilinear Moore-Gibson-Thompson equation with nonlinearity of derivative type in the conservative case[J]. Evolution Equations and Control Theory, 2020, 10(4): 673-687.
    [19] CHEN W. Interplay effects on blow-up of weakly coupled systems for semilinear wave equations with general nonlinear memory terms[J]. Nonlinear Analysis, 2021, 202: 112160. doi: 10.1016/j.na.2020.112160
    [20] CHEN W, REISSIG M. Blow-up of solutions to Nakao’s problem via an iteration argument[J]. Journal of Differential Equations, 2021, 275: 733-756. doi: 10.1016/j.jde.2020.11.009
    [21] LAI N A, TAKAMURA H. Nonexistence of global solutions of nonlinear wave equations with weak time-dependent damping related to Glassey’s conjecture[J]. Differential and Integral Equations, 2019, 32(1/2): 37-48.
    [22] LAI N A, TAKAMURA H, WAKASA K. Blow-up for semilinear wave equations with the scale invariant damping and super-Fujita exponent[J]. Journal of Differential Equations, 2017, 263(9): 5377-5394. doi: 10.1016/j.jde.2017.06.017
    [23] PALMIERI A, TAKAMURA A. Blow-up for a weekly coupled system of semilinear damped wave equations in the scattering case with power nonlinearities[J]. Nonlinear Analysis, 2019, 187: 467-492. doi: 10.1016/j.na.2019.06.016
    [24] YORDANOV B T, ZHANG Q S. Finite time blow up for critical wave equations in high dimensions[J]. Journal of Functional Analysis, 2006, 231(2): 361-374. doi: 10.1016/j.jfa.2005.03.012
  • 加载中
计量
  • 文章访问数:  793
  • HTML全文浏览量:  364
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-13
  • 修回日期:  2021-10-27
  • 网络出版日期:  2021-11-09
  • 刊出日期:  2022-03-08

目录

    /

    返回文章
    返回