留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

负压激励下含椭圆孔高弹体的屈曲分析

梁观坡 傅禹鑫 娄本亮 谢宇新

梁观坡,傅禹鑫,娄本亮,谢宇新. 负压激励下含椭圆孔高弹体的屈曲分析 [J]. 应用数学和力学,2021,42(12):1221-1228 doi: 10.21656/1000-0887.420100
引用本文: 梁观坡,傅禹鑫,娄本亮,谢宇新. 负压激励下含椭圆孔高弹体的屈曲分析 [J]. 应用数学和力学,2021,42(12):1221-1228 doi: 10.21656/1000-0887.420100
LIANG Guanpo, FU Yuxin, LOU Benliang, XIE Yuxin. Buckling Behaviors of Elastomers With Periodic Elliptical Holes Under Negative Pressure Activation[J]. Applied Mathematics and Mechanics, 2021, 42(12): 1221-1228. doi: 10.21656/1000-0887.420100
Citation: LIANG Guanpo, FU Yuxin, LOU Benliang, XIE Yuxin. Buckling Behaviors of Elastomers With Periodic Elliptical Holes Under Negative Pressure Activation[J]. Applied Mathematics and Mechanics, 2021, 42(12): 1221-1228. doi: 10.21656/1000-0887.420100

负压激励下含椭圆孔高弹体的屈曲分析

doi: 10.21656/1000-0887.420100
基金项目: 国家自然科学基金(12072225; 11532001; 11991031; 11991032; 12021002)
详细信息
    作者简介:

    梁观坡(1995—),男,硕士生 (E-mail:254092944@qq.com)

    谢宇新(1974—),男,副教授,博士 (通讯作者. E-mail:xyx@tju.edu.cn)

  • 中图分类号: O343.9

Buckling Behaviors of Elastomers With Periodic Elliptical Holes Under Negative Pressure Activation

  • 摘要:

    基于数值模拟与理论分析,研究了含周期性椭圆孔二维结构的屈曲行为。针对不同的屈曲模态,建立理论模型进行模态分析。结果表明,改变孔的几何参数,椭圆孔结构的屈曲模态会随之发生转换,理论分析与数值结果吻合良好。此外,在数值模拟中,与位移加载不同,负压激励下的单胞需要考虑力边界条件的修正,以确保其满足完备性条件。已有工作在单胞选择中常存在问题,导致错误结果。针对上述问题研究了不同单胞所对应的边界条件,并结合有限结构进行了分析与讨论。

  • 图  1  二维正方排布椭圆孔周期结构的不同单胞取法

    Figure  1.  Various methods of selecting unit cells for the periodic structure with elliptical holes in 2D tetragonal lattice arrangement

    图  2  单胞a、单胞b与修正后的单胞b在负压加载下的临界压力

    Figure  2.  Critical pressures of unit cell a, unit cell b and modified unit cell b under the negative pressure

    图  3  单胞a与单胞b在单轴位移加载下的临界应变

    Figure  3.  Critical strains of unit cell a and unit cell b under the loading of uniaxial displacement

    图  4  有限结构与单胞a在条带截面的法向合力

    Figure  4.  Normal resultant forces of the finite structure and unit cell a at the strip section

    图  5  有限结构大小对其临界力的影响

    Figure  5.  The influence of the finite structure size on its critical force

    图  6  单胞a与单胞b在条带截面的法向合力

    注 为了解释图中的颜色,读者可以参考本文的电子网页版本,后同。

    Figure  6.  Normal resultant forces of unit cell a and unit cell b at the strip section

    图  7  后屈曲变形的数值结果

    Figure  7.  Numerical results of post-buckling deformation

    图  8  后屈曲变形的理论模型

    Figure  8.  Theoretical models for post-buckling deformation

    图  9  周期性多孔高弹体

    Figure  9.  The periodic porous elastomer

    图  10  理论临界压力与数值模拟结果的比较

    Figure  10.  Comparison of theoretical critical pressures and numerical simulation results

    图  11  椭圆孔周期结构的单胞屈曲模式相图

    Figure  11.  The phase diagram of unit cell buckling modes in the periodic structure with elliptical holes

  • [1] LEE J H, SINGER J P, THOMAS E L. Micro-/nanostructured mechanical metamaterials[J]. Advanced Materials, 2012, 24(36): 4782-4810. doi: 10.1002/adma.201201644
    [2] COULAIS C, TEOMY E, DE REUS K, et al. Combinatorial design of textured mechanical metamaterials[J]. Nature, 2016, 535(7613): 529-532. doi: 10.1038/nature18960
    [3] 陈启勇, 胡少伟, 张子明. 基于声子晶体理论的弹性地基梁的振动特性研究[J]. 应用数学和力学, 2014, 35(1): 29-38. (CHEN Qiyong, HU Shaowei, ZHANG Ziming. Research on the vibration property of the beam on elastic foundation based on the PCs theory[J]. Applied Mathematics and Mechanics, 2014, 35(1): 29-38.(in Chinese) doi: 10.3879/j.issn.1000-0887.2014.01.004
    [4] PELRINE R, KORNBLUH R, PEI Q B, et al. High-speed electrically actuated elastomers with strain greater than 100%[J]. Science, 2000, 287(5454): 836-839. doi: 10.1126/science.287.5454.836
    [5] BROCHU P, PEI Q B. Advances in dielectric elastomers for actuators and artificial muscles[J]. Macromolecular Rapid Communications, 2010, 31(1): 10-36. doi: 10.1002/marc.200900425
    [6] BERTOLDI K, BOYCE M C, DESCHANEL S, et al. Mechanics of deformation-triggered pattern transformations and superelastic behavior in periodic elastomeric structures[J]. Journal of the Mechanics and Physics of Solids, 2008, 56(8): 2642-2668. doi: 10.1016/j.jmps.2008.03.006
    [7] WANG G, LI M, ZHOU J. Switching of deformation modes in soft mechanical metamaterials[J]. Soft Materials, 2016, 14(3): 180-186. doi: 10.1080/1539445X.2016.1178143
    [8] MULLIN T, DESCHANEL S, BERTOLDI K, et al. Pattern transformation triggered by deformation[J]. Physical Review Letters, 2007, 99(8): 084301. doi: 10.1103/PhysRevLett.99.084301
    [9] BERTOLDI K, REIS P M, WILLSHAW S, et al. Negative Poisson’s ratio behavior induced by an elastic instability[J]. Advanced Materials, 2010, 22(3): 361-366. doi: 10.1002/adma.200901956
    [10] HU J, HE Y, LEI J, et al. Novel mechanical behavior of periodic structure with the pattern transformation[J]. Theoretical and Applied Mechanics Letters, 2013, 3(5): 054007. doi: 10.1063/2.1305407
    [11] BERTOLDI K, BOYCE M C. Mechanically triggered transformations of phononic band gaps in periodic elastomeric structures[J]. Physical Review B, 2008, 77(5): 439-446.
    [12] HU J, HE Y, LEI J, et al. Mechanical behavior of composite gel periodic structures with the pattern transformation[J]. Structural Engineering and Mechanics, 2014, 50(5): 605-616. doi: 10.12989/sem.2014.50.5.605
    [13] LI J, SLESARENKO V, RUDYKH S. Auxetic multiphase soft composite material design through instabilities with application for acoustic metamaterials[J]. Soft Matter, 2018, 14(30): 6171-6180. doi: 10.1039/C8SM00874D
    [14] LI J, WANG Y T, CHEN W Q, et al. Harnessing inclusions to tune post-buckling deformation and bandgaps of soft porous periodic structures[J]. Journal of Sound and Vibration, 2019, 459: 114848. doi: 10.1016/j.jsv.2019.114848
    [15] CHEN K L, CAO Y P, ZHANG M G, et al. Indentation-triggered pattern transformation in hyperelastic soft cellular solids[J]. Comptes Rendus Mécanique, 2014, 342(5): 292-298.
    [16] CHEN Y, SCARPA F, REMILLAT C, et al. Curved Kirigami SILICOMB cellular structures with zero Poisson’s ratio for large deformations and morphing[J]. Journal of Intelligent Material Systems and Structures, 2013, 25(6): 731-743.
    [17] WANG P, SHIM J, BERTOLDI K. Effects of geometric and material nonlinearities on tunable band gaps and low-frequency directionality of phononic crystals[J]. Physical Review B, 2013, 88(1): 2466-2472.
    [18] SHIM J, WANG P, BERTOLDI K. Harnessing instability-induced pattern transformation to design tunable phononic crystals[J]. International Journal of Solids and Structures, 2015, 58: 52-61. doi: 10.1016/j.ijsolstr.2014.12.018
    [19] JOHNSON C G, JAIN U, HAZEL A L, et al. On the buckling of an elastic holey column[J]. Proceedings of the Royal Society A: Mathematical Physical and Engineering Sciences, 2017, 473(2207): 20170477. doi: 10.1098/rspa.2017.0477
    [20] CHEN Y C, JIN L H. Geometric role in designing pneumatically actuated pattern-transforming metamaterials[J]. Extreme Mechanics Letters, 2018, 23: 55-66. doi: 10.1016/j.eml.2018.08.001
  • 加载中
图(11)
计量
  • 文章访问数:  878
  • HTML全文浏览量:  320
  • PDF下载量:  86
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-16
  • 录用日期:  2021-04-16
  • 修回日期:  2021-05-10
  • 网络出版日期:  2021-12-31
  • 刊出日期:  2021-12-01

目录

    /

    返回文章
    返回