留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Vallis系统的不变代数曲面研究

杨静 谈文慧 魏周超

杨静,谈文慧,魏周超. Vallis系统的不变代数曲面研究 [J]. 应用数学和力学,2022,43(1):84-93 doi: 10.21656/1000-0887.420112
引用本文: 杨静,谈文慧,魏周超. Vallis系统的不变代数曲面研究 [J]. 应用数学和力学,2022,43(1):84-93 doi: 10.21656/1000-0887.420112
YANG Jing, TAN Wenhui, WEI Zhouchao. Invariant Algebraic Surfaces of the Vallis System[J]. Applied Mathematics and Mechanics, 2022, 43(1): 84-93. doi: 10.21656/1000-0887.420112
Citation: YANG Jing, TAN Wenhui, WEI Zhouchao. Invariant Algebraic Surfaces of the Vallis System[J]. Applied Mathematics and Mechanics, 2022, 43(1): 84-93. doi: 10.21656/1000-0887.420112

Vallis系统的不变代数曲面研究

doi: 10.21656/1000-0887.420112
基金项目: 国家自然科学基金(12172340;11772306;11832002)
详细信息
    作者简介:

    杨静(1995—),女(E-mail:865097354@qq.com)

    谈文慧(1998—),女(E-mail:1944694147@qq.com)

    魏周超(1984—),男,教授,博士,博士生导师(通讯作者. E-mail:weizhouchao@163.com)

  • 中图分类号: O151

Invariant Algebraic Surfaces of the Vallis System

  • 摘要:

    该文研究了Vallis系统的Darboux多项式和不变代数曲面问题。 在证明中,使用加权齐次多项式和特征曲线的方法,通过求解线性偏微分方程,得到了在适当的参数条件下,Vallis系统存在三类Darboux多项式。

  • [1] 李小虎, 张定一, 宋自根. 时滞耦合惯性项神经系统的多混沌路径共存[J]. 应用数学和力学, 2020, 41(6): 636-645. (LI Xiaohu, ZHANG Dingyi, SONG Zigen. Multistage coexistence of different chaotic routes in a delayed neural system[J]. Applied Mathematics and Mechanics, 2020, 41(6): 636-645.(in Chinese)
    [2] 李海涛, 丁虎, 陈立群, 等. 三稳态能量收集系统的同宿分岔及混沌动力学分析[J]. 应用数学和力学, 2020, 41(12): 1311-1322. (LI Haitao, DING Hu, CHEN Liqun, et al. Homoclinic bifurcations and chaos thresholds of tristable piezoelectric vibration energy harvesting systems[J]. Applied Mathematics and Mechanics, 2020, 41(12): 1311-1322.(in Chinese)
    [3] DARBOUX G. Mémorire sur les équations différentielles algébriques du premier ordre et du premier degré(mélanges)[J]. Bulletin des Sciences Mathématiques, 1878, 2(10): 60-200.
    [4] POINCARÉ H. Sur I’intégration algébrique des équations différentielles du premier ordre et du premier degré Ⅰ[J]. Rendiconti del Circolo Matematico di Palermo, 1891, 5: 161-191. doi: 10.1007/BF03015693
    [5] 马文秀. 一族Liouville可积的有限维Hamilton系统[J]. 应用数学和力学, 1992, 13(4): 349-357. (MA Wenxiu. A hierarchy of Liouville integrable finite-dimensional hamiltonian systems[J]. Applied Mathematics and Mechanics, 1992, 13(4): 349-357.(in Chinese)
    [6] LABRUNIE S. On the polynomial first integrals of the (a, b, c) Lotka-Volterra system[J]. Journal of Mathematical Physics, 1996, 37(11): 5539-5550.
    [7] OLLAGNIER J M. Rational integration of the Lotka-Volterra system[J]. Bulletin of Mathematical Sciences, 1999, 123(6): 437-466. doi: 10.1016/S0007-4497(99)00111-6
    [8] LLIBRE J, ZHANG X. Invariant algebraic surfaces of the Rikitake system[J]. Journal of Physics A: Mathematical and Theoretical, 2000, 33(42): 7613-7635. doi: 10.1088/0305-4470/33/42/310
    [9] LLIBRE J, ZHANG X. Invariant algebraic surfaces of the Lorenz system[J]. Journal of Mathematical Physics, 2002, 43(3): 1622-1645. doi: 10.1063/1.1435078
    [10] SWINNERTON-DYER P. The invariant algebraic surfaces of the Lorenz system[J]. Mathematical Proceedings of the Cambridge Philosophical Society, 2002, 132(3): 385-393. doi: 10.1017/S0305004101005667
    [11] LÜ T H, ZHANG X. Darboux polynomials and algebraic integerability of the Chen system[J]. International Journal of Bifurcation and Chaos, 2007, 17(8): 2739-2748. doi: 10.1142/S0218127407018725
    [12] DENG X J, CHEN A Y. Invariant algebraic surfaces of the Chen system[J]. International Journal of Bifurcation and Chaos, 2011, 21(6): 1645-1651. doi: 10.1142/S0218127411029331
    [13] MURILO C, LLIBRE J, CLAUDIA V. Invariant algebraic surfaces and Hopf bifurcation of a finance model[J]. International Journal of Bifurcation and Chaos, 2018, 28(12): 1850150. doi: 10.1142/S021812741850150X
    [14] AYBAR I K, AYBAR O O, DUKARIC M, et al. Dynamical analysis of a two prey-one predator system with quadratic self interaction[J]. Applied Mathematics and Computation, 2018, 333(15): 118-132.
    [15] FERRAGUT A, GALINDO C, MONSERRAT F. On the computation of Darboux first integrals of a class of planar polynomial vector fields[J]. Journal of Mathematical Analysis and Applications, 2019, 478(2): 743-763. doi: 10.1016/j.jmaa.2019.05.052
    [16] DIAS F S, LLIBRE J, VALLS C. Global dynamics of a virus model with invariant algebraic surfaces[J]. Rendiconti del Circolo Matematico di Palermo(Series 2), 2020, 69: 535-546. doi: 10.1007/s12215-019-00417-0
    [17] DIAS F S, VALLS C. Global dynamics of the Maxwell-Bloch system with invariant algebraic surfaces[J]. Dynamical Systems, 2020, 35(4): 668-681. doi: 10.1080/14689367.2020.1770202
    [18] EGGER J. Stochastically driven large-scale circulations with multiple equilibria[J]. Journal of the Atmospheric Sciences, 1981, 38(12): 2606-2618. doi: 10.1175/1520-0469(1981)038<2606:SDLSCW>2.0.CO;2
    [19] MCREARY J P, ANDERSON D L T. A simple model of El Niño and the southern oscillation[J]. Monthly Weather Review, 1984, 112: 934-946. doi: 10.1175/1520-0493(1984)112<0934:ASMOEN>2.0.CO;2
    [20] CANE M A, ZEBIAK S E. A theory for El Niño and the southern oscillation[J]. Science, 1985, 228(4703): 1085-1087. doi: 10.1126/science.228.4703.1085
    [21] ANDERSON D L T, MCREARY J P. Slowly propagating disturbances in a coupled ocean atmosphere model[J]. Journal of the Atmospheric Sciences, 1985, 42(6): 615-630. doi: 10.1175/1520-0469(1985)042<0615:SPDIAC>2.0.CO;2
    [22] VALLIS G K. Conceptual models of El Niño and the southern oscillation[J]. Journal of Geophysical Research, 1988, 93: 13979-13991. doi: 10.1029/JC093iC11p13979
    [23] KRISHCHENKO A, STARKOV K. Localization of compact invariant compact sets of nonlinear time varying systems[J]. International Journal of Bifurcation and Chaos, 2008, 18(5): 1599-1604. doi: 10.1142/S021812740802121X
    [24] EUZEBIO R, LLIBRE J. Periodic solutions of El Niño model through the Vallis differential system[J]. Discrete and Continuous Dynamical Systems: A, 2014, 34(9): 3455-3469. doi: 10.3934/dcds.2014.34.3455
    [25] GARAY B, INDIG B. Chaos in Vallis’ asymmetric Lorenz model for El Niño[J]. Chaos Solitons and Fractals, 2015, 75: 253-262. doi: 10.1016/j.chaos.2015.02.015
    [26] BORGHEZAN M, RECH P C. Chaos and periodicity in Vallis model for El Niño[J]. Chaos Solitons and Fractals, 2017, 97: 15-18. doi: 10.1016/j.chaos.2017.01.018
    [27] RAJAGOPAL K, JAFARI S, PHAM V, et al. Anti-monotonicity, bifurcation and multistability in the Vallis model for El Niño[J]. International Journal of Bifurcation and Chaos, 2019, 29(3): 1950032. doi: 10.1142/S0218127419500329
  • 加载中
计量
  • 文章访问数:  760
  • HTML全文浏览量:  433
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-28
  • 录用日期:  2021-06-22
  • 修回日期:  2021-06-22
  • 网络出版日期:  2021-12-04
  • 刊出日期:  2022-01-01

目录

    /

    返回文章
    返回