留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于actor-critic算法的分数阶多自主体系统最优主-从一致性控制

马丽新 刘晨 刘磊

马丽新,刘晨,刘磊. 基于actor-critic算法的分数阶多自主体系统最优主-从一致性控制 [J]. 应用数学和力学,2022,43(1):104-114 doi: 10.21656/1000-0887.420124
引用本文: 马丽新,刘晨,刘磊. 基于actor-critic算法的分数阶多自主体系统最优主-从一致性控制 [J]. 应用数学和力学,2022,43(1):104-114 doi: 10.21656/1000-0887.420124
MA Lixin, LIU Chen, LIU Lei. Optimal Leader-Following Consensus Control of Fractional-Order Multi-Agent Systems Based on the Actor-Critic Algorithm[J]. Applied Mathematics and Mechanics, 2022, 43(1): 104-114. doi: 10.21656/1000-0887.420124
Citation: MA Lixin, LIU Chen, LIU Lei. Optimal Leader-Following Consensus Control of Fractional-Order Multi-Agent Systems Based on the Actor-Critic Algorithm[J]. Applied Mathematics and Mechanics, 2022, 43(1): 104-114. doi: 10.21656/1000-0887.420124

基于actor-critic算法的分数阶多自主体系统最优主-从一致性控制

doi: 10.21656/1000-0887.420124
基金项目: 国家自然科学基金(面上项目)(61773152);中央高校基本科研业务费(2019B19214)
详细信息
    作者简介:

    马丽新(1997—),女,硕士生(E-mail:1623406486@qq.com)

    刘晨(1993—),男,博士生(E-mail:liuchen_hhu@163.com)

    刘磊(1983—),男,副教授,博士生导师(通讯作者. E-mail:liulei_hust@163.com)

  • 中图分类号: TP273; O232

Optimal Leader-Following Consensus Control of Fractional-Order Multi-Agent Systems Based on the Actor-Critic Algorithm

  • 摘要:

    研究了分数阶多自主体系统的最优主-从一致性问题。在考虑控制器周期间歇的前提下,将分数阶微分的一阶近似逼近式、事件触发机制和强化学习中的actor-critic算法有机整合,设计了基于周期间歇事件触发策略的强化学习算法结构。最后,通过数值仿真实验证明了该算法的可行性和有效性。

  • 图  1  多自主体系统网络拓扑图(1个领导者,3个追随者)

    Figure  1.  The net topology of the multi-agent system (1 leader, 3 followers)

    图  2  无控制器作用时,各自主体的状态轨迹(1个领导者,3个追随者)

    Figure  2.  State trajectories of each agent without controllers (1 leader, 3 followers)

    图  3  各自主体的状态轨迹(1个领导者,3个追随者)

    Figure  3.  State trajectories of each agent (1 leader, 3 followers)

    图  4  $\|\boldsymbol{e}\left(t\right)\| $及触发阈值变化曲线(1个领导者,3个追随者)

    Figure  4.  The error and the trigger threshold (1 leader, 3 followers)

    图  5  周期间歇事件触发时刻分布

    Figure  5.  The event-trigger moment distribution of periodic intermittence

    图  6  多自主体系统网络拓扑图(1个领导者,4个追随者)

    Figure  6.  The net topology of the multi-agent system (1 leader, 4 followers)

    图  7  无控制器作用时,各自主体的状态轨迹(1个领导者,4个追随者)

    Figure  7.  State trajectories of each agent without controllers (1 leader, 4 followers)

    图  8  各自主体的状态轨迹(1个领导者,4个追随者)

    Figure  8.  State trajectories of each agent (1 leader, 4 followers)

    图  9  $\left|\left|{{\boldsymbol{e}}}\left(t\right)\right|\right|$及触发阈值变化曲线(1个领导者,4个追随者)

    Figure  9.  The error and the trigger threshold (1 leader, 4 followers)

    图  10  事件触发时刻分布

    Figure  10.  The event-trigger moment distribution

    图  11  文献[16]控制器下,各自主体的状态轨迹图

    Figure  11.  State trajectories of each agent under ref. [16]

    图  12  $\left|\left|{{\boldsymbol{e}}}\left(t\right)\right|\right|$及触发阈值变化曲线

    Figure  12.  The error $\left|\left|{{\boldsymbol{e}}}\left(t\right)\right|\right|$ and the trigger threshold

    图  13  事件触发时刻分布

    Figure  13.  The event-trigger moment distribution

    表  1  网络参数设置

    Table  1.   Values of networks’ parameters

    parametermeaningvalue
    ${\beta }_{{\rm{c}}1}$learning rate of the critic network0.1
    ${\beta }_{{\rm{a}}1}$learning rate of the actor network0.1
    ${T}_{{\rm{c}},\mathrm{e}\mathrm{r}\mathrm{r}\mathrm{o}\mathrm{r} }$threshold for the critic network$ {10^{ - 10}} $
    ${T}_{{\rm{a}},\mathrm{e}\mathrm{r}\mathrm{r}\mathrm{o}\mathrm{r} }$threshold for the actor network$ {10^{ - 10}} $
    ${N}_{{\rm{c}}1}$number of hidden nodes in the critic network5
    ${N}_{{\rm{a}}1}$number of hidden nodes in the critic network3
    ${\psi }_{{\rm{c}}}\left(\cdot \right)$activation function of the critic network$ \mathrm{tan}\mathrm{h}\left(\cdot \right) $
    ${\psi }_{{\rm{a}}}\left(\cdot \right)$activation function of the actor network$ \mathrm{tan}\mathrm{h}\left(\cdot \right) $
    下载: 导出CSV
  • [1] CORTÉS J, BULLO F. Coordination and geometric optimization via distributed dynamical systems[J]. SIAM Journal on Control and Optimization, 2005, 44(5): 1543-1574. doi: 10.1137/S0363012903428652
    [2] FAX J A, MURRAY R M. Information flow and cooperative control of vehicle formations[J]. IEEE Transactions on Automatic Control, 2004, 49(9): 1465-1476. doi: 10.1109/TAC.2004.834433
    [3] YU W W, CHEN G R, WANG Z D, et al. Distributed consensus filtering in sensor networks[J]. IEEE Transactions on Systems, Man, and Cybernetics (Part B): Cybernetics, 2009, 39(6): 1568-1577. doi: 10.1109/TSMCB.2009.2021254
    [4] BEARD R W, MCLAIN T W, GOODRICH M A, et al. Coordinated target assignment and intercept for unmanned air vehicles[J]. IEEE Transactions on Robotics and Automation, 2002, 18(6): 911-922. doi: 10.1109/TRA.2002.805653
    [5] FAX J A, MURRAY R M. Information flow and cooperative control of vehicle formations[J]. IFAC Proceedings Volumes, 2002, 35(1): 115-120.
    [6] YU W W, WANG H, CHENG F, et al. Second-order consensus in multiagent systems via distributed sliding mode control[J]. IEEE Transactions on Cybernetics, 2017, 47(8): 1872-1881. doi: 10.1109/TCYB.2016.2623901
    [7] YU W W, CHEN G R, CAO M, et al. Second-order consensus for multiagent systems with directed topologies and nonlinear dynamics[J]. IEEE Transactions on Systems, Man, and Cybernetics (Part B): Cybernetics, 2010, 40(3): 881-891. doi: 10.1109/TSMCB.2009.2031624
    [8] WEN G H, YU W W, XIA Y Q, et al. Distributed tracking of nonlinear multiagent systems under directed switching topology: an observer-based protocol[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2017, 47(5): 869-881. doi: 10.1109/TSMC.2016.2564929
    [9] WEN G H, YU W W, LI Z H, et al. Neuro-adaptive consensus tracking of multiagent systems with a high-dimensional leader[J]. IEEE Transactions on Cybernetics, 2017, 47(7): 1730-1742. doi: 10.1109/TCYB.2016.2556002
    [10] SUN W, LI Y, LI C P, et al. Convergence speed of a fractional order consensus algorithm over undirected scale-free networks[J]. Asian Journal of Control, 2011, 13(6): 936-946. doi: 10.1002/asjc.390
    [11] CHAO S, CAO J D. Consensus of fractional-order linear systems[C]//2013 9th Asian Control Conference (ASCC). Istanbul, Turkey, 2013.
    [12] YU W W, LI Y, WEN G H, et al. Observer design for tracking consensus in second-order multi-agent systems: fractional order less than two[J]. IEEE Transactions on Automatic Control, 2017, 62(2): 894-900. doi: 10.1109/TAC.2016.2560145
    [13] ASTROM K J, BERNHARDSSON B. Comparison of periodic and event based sampling for first-order stochastic systems[C]//14th IFAC World Congress. Beijing, China, 1999.
    [14] DIMAROGONAS D V, JOHANSSON K H. Event-triggered control for multi-agent systems[C]//Proceedings of the 48th IEEE Conference on Decision and Control, CDC 2009, Combined With the 28th Chinese Control Conference. Shanghai, China, 2009.
    [15] XU G H, CHI M, HE D X, et al. Fractional-order consensus of multi-agent systems with event-triggered control[C]//2014 11th IEEE International Conference on Control & Automation (ICCA). Taichung, 2014.
    [16] WANG F, YANG Y Q. Leader-following consensus of nonlinear fractional-order multi-agent systems via event-triggered control[J]. International Journal of Systems Science, 2017, 48(3): 571-577.
    [17] YE Y Y, SU H S. Consensus of delayed fractional-order multiagent systems with intermittent sampled data[J]. IEEE Transactions on Industrial Informatics, 2019, 16(6): 3828-3837.
    [18] XU L G, LIU W, HU H X, et al. Exponential ultimate boundedness of fractional-order differential systems via periodically intermittent control[J]. Nonlinear Dynamics, 2019, 96(2): 1665-1675. doi: 10.1007/s11071-019-04877-y
    [19] XU Y, LI Q, LI W X. Periodically intermittent discrete observation control for synchronization of fractional-order coupled systems[J]. Communications in Nonlinear Science and Numerical Simulation, 2019, 74: 219-235. doi: 10.1016/j.cnsns.2019.03.014
    [20] CHANG Q, HU A H, YANG Y Q, et al. Pinning exponential boundedness of fractional-order multi-agent systems with intermittent combination event-triggered protocol[J]. International Journal of Systems Science, 2020, 52(4): 874-888.
    [21] HU A, HP JU, HU M. Consensus of nonlinear multiagent systems with intermittent dynamic event-triggered protocols[J]. Nonlinear Dynamics, 2021, 104: 1299-1313. doi: 10.1007/s11071-021-06321-6
    [22] LIU X Y, FU H B, LIU L. Leader-following mean square consensus of stochastic multi-agent systems via periodically intermittent event-triggered control[J]. Neural Processing Letters, 2020, 53(1): 275-298.
    [23] REN W, BEARD R W, ATKINS E M. A survey of consensus problems in multi-agent coordination[C]//Proceedings of the 2005, American Control Conference. Portland, OR, USA, 2005.
    [24] ZHANG H G, JIANG H, LUO Y H, et al. Data-driven optimal consensus control for discrete-time multi-agent systems with unknown dynamics using reinforcement learning method[J]. IEEE Transactions on Industrial Electronics, 2017, 64(5): 4091-4100. doi: 10.1109/TIE.2016.2542134
    [25] ZHAO W, YU W W, ZHANG H P. Event-triggered optimal consensus tracking control for multi-agent systems with unknown internal states and disturbances[J]. Nonlinear Analysis Hybrid Systems, 2019, 33: 227-248. doi: 10.1016/j.nahs.2019.03.003
    [26] DONG L, ZHONG X N, SUN C Y, et al. Event-triggered adaptive dynamic programming for continuous-time systems with control constraints[J]. IEEE Transactions on Neural Networks and Learning Systems, 2016, 28(8): 1941-1952.
    [27] 刘晨, 刘磊. 基于事件触发策略的多智能体系统的最优主-从一致性分析[J]. 应用数学和力学, 2019, 40(11): 1278-1288. (LIU Chen, LIU Lei. Optimal leader-follower consensus of multi-agent systems based on the event-triggered strategy[J]. Applied Mathematics and Mechanics, 2019, 40(11): 1278-1288.(in Chinese)
    [28] PODLUBNY I. Fractional Differential Equations[M]. New York, USA: Academic, 1999.
    [29] ATANACKOVIC T M, STANKOVIC B. On a numerical scheme for solving differential equations of fractional order[J]. Mechanics Research Communications, 2008, 35(7): 429-438.
    [30] POOSEH S, ALMEIDA R, TORRES D. Fractional order optimal control problems with free terminal time[J]. Journal of Industrial & Management Optimization, 2014, 10(2): 363-381.
    [31] ILBAS A A A, SRIVASTAVA H M, TRUJILLO J J. Theory and Applications of Fractional Differential Equations[M]. North-Holland Mathematics Studies, 204. Elsevier, 2006.
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  1156
  • HTML全文浏览量:  525
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-07
  • 录用日期:  2021-05-07
  • 修回日期:  2021-12-03
  • 网络出版日期:  2021-12-17
  • 刊出日期:  2022-01-01

目录

    /

    返回文章
    返回