留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一类非线性时间分数阶扩散方程反问题的变分型正则化

柳冕 程浩 石成鑫

柳冕,程浩,石成鑫. 一类非线性时间分数阶扩散方程反问题的变分型正则化 [J]. 应用数学和力学,2022,43(3):341-352 doi: 10.21656/1000-0887.420168
引用本文: 柳冕,程浩,石成鑫. 一类非线性时间分数阶扩散方程反问题的变分型正则化 [J]. 应用数学和力学,2022,43(3):341-352 doi: 10.21656/1000-0887.420168
LIU Mian, CHENG Hao, SHI Chengxin. Variational Regularization of  the Inverse Problem of a Class of  Nonlinear Time-Fractional Diffusion Equations[J]. Applied Mathematics and Mechanics, 2022, 43(3): 341-352. doi: 10.21656/1000-0887.420168
Citation: LIU Mian, CHENG Hao, SHI Chengxin. Variational Regularization of  the Inverse Problem of a Class of  Nonlinear Time-Fractional Diffusion Equations[J]. Applied Mathematics and Mechanics, 2022, 43(3): 341-352. doi: 10.21656/1000-0887.420168

一类非线性时间分数阶扩散方程反问题的变分型正则化

doi: 10.21656/1000-0887.420168
基金项目: 国家自然科学基金(11426117);江苏省自然科学基金(BK20190578)
详细信息
    作者简介:

    柳冕(1997—),男,硕士生(E-mail:819340002@qq.com

    程浩(1983—),男,副教授,硕士生导师(通讯作者. E-mail:chenghao@jiangnan.edu.cn

    石成鑫(1997—),男,硕士生(E-mail:1772065320@qq.com

  • 中图分类号: O241.8

Variational Regularization of  the Inverse Problem of a Class of  Nonlinear Time-Fractional Diffusion Equations

  • 摘要:

    考虑了一类二维非线性时间分数阶扩散方程,并从最终位置获取的测量数据来反演物质在u(0, y, t)处的物理信息。这个问题是严重不适定的,即问题的解并不连续依赖于测量数据,因此提出了变分型正则化方法来稳定求解该问题。给出了精确解与正则近似解之间的误差估计,数值算例验证了该方法的有效性。

  • 图  1  $ {x}=0 $时的精确解和不同误差水平下的正则近似解$ {{u}}^{{\alpha },{\varepsilon }} $

    Figure  1.  Exact solution $ u $ at $ x=0 $ and regularized approximate solution $ {u}^{\alpha ,\varepsilon } $ curves corresponding to different error levels

    图  2  正则化解和精确解在不同x取值下的比较(y=0)

    Figure  2.  The exact solution and its regularized solution curves corresponding to different x values ( y =0)

    表  1  不同误差水平下的相对误差$ {E}_{{\rm{r}}} $

    Table  1.   Relative errors corresponding to different error levels

    $ {x} $$ {{E}}_{\rm{r}} $
    $ {\varepsilon }=1{\rm{E}}-1 $$ {\varepsilon }=1{\rm{E}}-2 $$ {\varepsilon }=1{\rm{E}}-3 $
    02.749E−12.685E−12.682E−1
    0.12.639E−12.522E−12.520E−1
    0.22.409E−12.367E−12.348E−1
    0.32.251E−12.219E−12.227E−1
    0.42.047E−12.017E−12.026E−1
    0.51.848E−11.709E−11.713E−1
    0.61.551E−11.366E−11.345E−1
    0.71.213E−11.030E−11.026E−1
    0.81.003E−18.010E−27.600E−2
    0.99.800E−29.750E−29.470E−2
    下载: 导出CSV
  • [1] TARASOV V E, ZASLAVSKY G M. Fractional Ginzburg-Landau equation for fractal media[J]. Physica A: Statistical Mechanics & Its Applications, 2005, 354(15): 249-261.
    [2] METZLER R, KLAFTER J. The random walk’s guide to anomalous diffusion: a fractional dynamics approach[J]. Physics Reports, 2000, 339(1): 1-77. doi: 10.1016/S0370-1573(00)00070-3
    [3] MENDES R V. A fractional calculus interpretation of the fractional volatility model[J]. Nonlinear Dynamics, 2009, 55(4): 395-399. doi: 10.1007/s11071-008-9372-0
    [4] GARRAPPA R, MORET I, POPOLIZIO M. Solving the time-fractional Schrödinger equation by Krylov projection methods[J]. Journal of Computational Physics, 2015, 293: 115-134. doi: 10.1016/j.jcp.2014.09.023
    [5] 余钊圣, 林建忠. 粘弹性二阶流体混合层流场拟序结构的数值研究[J]. 应用数学和力学, 1998, 19(8): 671-677. (YU Zhaosheng, LIN Jianzhong. Numerical research on the coherent structure in the viscoelastic second-order mixing layers[J]. Applied Mathematics and Mechanics, 1998, 19(8): 671-677.(in Chinese)
    [6] JIANG Y J, MA J T. High-order finite element methods for time-fractional partial differential equations[J]. Journal of Computational and Applied Mathematics, 2011, 235(11): 3285-3290. doi: 10.1016/j.cam.2011.01.011
    [7] ZHUANG P H, LIU F W. Implicit difference approximation for the two-dimensional space-time fractional diffusion equation[J]. Journal of Applied Mathematics & Informatics, 2007, 25(1): 269-282.
    [8] GAO G H, SUN H W, SUN Z Z. Stability and convergence of finite difference schemes for a class of time-fractional sub-diffusion equations based on certain superconvergence[J]. Journal of Computational Physics, 2015, 280: 510-528. doi: 10.1016/j.jcp.2014.09.033
    [9] LUCHKO Y. Some uniqueness and existence results for the initial-boundary-value problems for the generalized time-fractional diffusion equation[J]. Computers and Mathematics With Applications, 2009, 59(5): 1766-1772.
    [10] MURIO D A. Stable numerical solution of a fractional-diffusion inverse heat conduction problem[J]. Computers & Mathematics With Applications, 2007, 53(10): 1492-1501.
    [11] CHENG H, FU C L. An iteration regularization for a time-fractional inverse diffusion problem[J]. Applied Mathematical Modelling, 2012, 36(11): 5642-5649. doi: 10.1016/j.apm.2012.01.016
    [12] LIU S S, FENG L X. A modified kernel method for a time-fractional inverse diffusion problem[J]. Advances in Difference Equations, 2015, 342: 1-11.
    [13] LIU S S, FENG L X. A posteriori regularization parameter choice rule for a modified kernel method for a time-fractional inverse diffusion problem[J]. Journal of Computational and Applied Mathematics, 2019, 353: 355-366. doi: 10.1016/j.cam.2018.12.038
    [14] ZHENG G H, WEI T. Spectral regularization method for solving a time-fractional inverse diffusion problem[J]. Applied Mathematics & Computation, 2011, 218(2): 396-405.
    [15] TUAN N H, KIRANE M, LUU V, et al. A regularization method for time-fractional linear inverse diffusion problems[J]. Electronic Journal of Differential Equations, 2016, 290: 1-18.
    [16] TUAN N H, HOAN L, TATAR S. An inverse problem for an inhomogeneous time-fractional diffusion equation: a regularization method and error estimate[J]. Computational & Applied Mathematics, 2019, 38(2): 1-22.
    [17] PODLUBNY I. Fractional Differential Equations[M]. San Diego: Academic Press, 1999.
    [18] VO H H, MINH T L, HONG P L, et al. An inverse problem for a time-fractional advection equation associated with a nonlinear reaction term[J]. Inverse Problems in Science & Engineering, 2021, 29(8): 1178-1198.
    [19] THI K T, HOANG-HUNG V. Recovering the historical distribution for nonlinear space-fractional diffusion equation with temporally dependent thermal conductivity in higher dimensional space[J]. Journal of Computational & Applied Mathematics, 2019, 345: 114-126.
    [20] ZHENG G H, ZHANG Q G. Recovering the initial distribution for space-fractional diffusion equation by a logarithmic regularization method[J]. Applied Mathematics Letters, 2016, 61: 143-148. doi: 10.1016/j.aml.2016.06.002
    [21] ZHENG G H, ZHANG Q G. Determining the initial distribution in space-fractional diffusion by a negative exponential regularization method[J]. Inverse Problems in Science & Engineering, 2017, 25(7): 965-977.
    [22] IOANNIS F, MARTIN M. Fixed Point Theorems and Their Applications[M]. New York: World Scientific Publishing Company, 2013.
  • 加载中
图(2) / 表(1)
计量
  • 文章访问数:  794
  • HTML全文浏览量:  390
  • PDF下载量:  93
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-17
  • 修回日期:  2021-08-26
  • 网络出版日期:  2022-01-08
  • 刊出日期:  2022-03-08

目录

    /

    返回文章
    返回