留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

T型微通道内液滴在幂律流体中运动机理的格子Boltzmann方法研究

刘浩 娄钦 黄一帆

刘浩,娄钦,黄一帆. T型微通道内液滴在幂律流体中运动机理的格子Boltzmann方法研究 [J]. 应用数学和力学,2022,43(3):255-271 doi: 10.21656/1000-0887.420182
引用本文: 刘浩,娄钦,黄一帆. T型微通道内液滴在幂律流体中运动机理的格子Boltzmann方法研究 [J]. 应用数学和力学,2022,43(3):255-271 doi: 10.21656/1000-0887.420182
LIU Hao, LOU Qin, HUANG Yifan. Study of Movement Mechanisms of Droplets in Power-Law Fluids in T-Junction Microchannels With the Lattice Boltzmann Method[J]. Applied Mathematics and Mechanics, 2022, 43(3): 255-271. doi: 10.21656/1000-0887.420182
Citation: LIU Hao, LOU Qin, HUANG Yifan. Study of Movement Mechanisms of Droplets in Power-Law Fluids in T-Junction Microchannels With the Lattice Boltzmann Method[J]. Applied Mathematics and Mechanics, 2022, 43(3): 255-271. doi: 10.21656/1000-0887.420182

T型微通道内液滴在幂律流体中运动机理的格子Boltzmann方法研究

doi: 10.21656/1000-0887.420182
基金项目: 国家自然科学基金(51976128);上海市自然科学基金 (19ZR1435700)
详细信息
    作者简介:

    刘浩(1997—),男,硕士生(E-mail:1416447818@qq.com

    娄钦(1984—),女,副教授,博士生导师(通讯作者. E-mail:louqin560916@163.com

  • 中图分类号: O373; O359+.1

Study of Movement Mechanisms of Droplets in Power-Law Fluids in T-Junction Microchannels With the Lattice Boltzmann Method

  • 摘要:

    采用非Newton不可压两相流格子Boltzmann模型研究了T型微通道内Newton液滴在非Newton幂律流体中的运动过程。研究了非Newton流体幂律指数n、主管道毛细数Ca、两相流量比Q、两相黏度比M以及主管道壁面润湿性θ对液滴在T型微通道内的形成尺寸、形成时间和变形参数(DI)的影响。研究结果表明:首先,主管道流体幂律指数n从0.4增加到1.6时,液滴的形成尺寸近似呈线性减小,而液滴的形成时间和变形参数先快速减小,然后缓慢减小;其次,黏度比对液滴形成尺寸、液滴形成以及变形参数的影响与幂律指数的影响基本一致;再者,随着Ca和主管道壁面润湿性的增加,形成液滴的尺寸近似呈线性减小,形成液滴的时间和变形参数先快速减小然后缓慢减小,且减小趋势随幂律指数的增加而减缓;最后,研究结果还表明主管道和子管道的流量比Q越大,液滴形成时间越长,液滴形成尺寸和变形参数越小。

  • 图  1  液滴内外压力差∆P和半径倒数1/r之间的关系

    Figure  1.  Relationships between pressure jump across the droplet interface ∆P and inverse of droplet radius 1/r

    图  2  不同静态接触角θeq得到的稳态接触角

    Figure  2.  Steady state contact angles obtained with different values of static contact angle θeq

    图  3  液滴在幂律流体中的示意图

    Figure  3.  The illustration of a single droplet in a power-law fluid

    图  4  不同幂律指数下,液滴的变形参数DICa的关系

    Figure  4.  Deformation parameter DI as a function of the capillary number for different power-law fluids

    图  5  T型微通道物理模型

    Figure  5.  The physical model for the T-junction microchannel

    图  6  T型微通道内主管道流体不同幂律指数液滴形成过程

    Figure  6.  The droplet formation process of the continuous phase fluid with different power-law indexes in the T-junction microchannel

    图  7  主管道流体幂律指数n对液滴的影响:(a)尺寸;(b)形成时间;(c)变形参数

    Figure  7.  The effects of continuous phase power-law index n on the droplet: (a) the size; (b) the formation time; (c) the deformation index

    图  8  主管道流体为剪切变稀流体(n=0.6)时,不同Ca下的T型微通道内液滴形成过程

    Figure  8.  The droplet formation process in the T-junction microchannel obtained with different capillary numbers for a shear thinning continuous phase fluid (n=0.6)

    图  9  主管道流体为Newton流体(n=1.0)时,不同Ca下的T型微通道内液滴形成过程

    Figure  9.  The droplet formation process in the T-junction microchannel obtained with different capillary numbers for a Newtonian continuous phase fluid (n=1.0)

    图  10  主管道流体为剪切变稠流体(n=1.4)时,不同Ca下的T型微通道内液滴形成过程

    Figure  10.  The droplet formation process in the T-junction microchannel obtained with different capillary numbers for a shear thickening continuous phase fluid (n=1.4)

    图  11  主管道Ca和幂律指数n对液滴的影响:(a)尺寸;(b)形成时间;(c)变形参数

    Figure  11.  The effects of continuous phase capillary number Ca and power-law index n on the droplet: (a) the size; (b) the formation time; (c) the deformation index

    图  12  主管道流体为剪切变稀流体(n=0.6)时,在不同流量比Q得到的T型微通道内液滴形成过程

    Figure  12.  The droplet formation process in the T-junction microchannel obtained with different flow ratios Q for a shear thinning continuous phase fluid (n=0.6)

    图  13  主管道流体为Newton流体(n=1.0)时,不同流量比Q得到的T型微通道内液滴形成过程

    Figure  13.  The droplet formation process in the T-junction microchannel obtained with different flow ratios Q for a Newtonian continuous phase fluid (n=1.0)

    图  14  主管道流体为剪切变稠流体(n=1.4)时,不同流量比Q得到的T型微通道内液滴形成过程

    Figure  14.  The droplet formation process in the T-junction microchannel obtained with different flow ratios Q for a shear thickening continuous phase fluid (n=1.4)

    图  15  流量比Q和幂律指数n对液滴的影响:(a)尺寸;(b)形成时间;(c)变形参数

    Figure  15.  The effects of continuous phase flow ratio Q and power-law index n on the droplet: (a) the size; (b) the formation time; (c) the deformation index

    图  16  主管道流体为剪切变稀流体(n=0.8)时,不同M得到的T型微通道内液滴形成过程

    Figure  16.  The droplet formation process in the T-junction microchannel obtained with different viscosity ratios M for a shear thinning continuous phase fluid (n=0.8)

    图  17  主管道流体为Newton流体(n=1.0)时,不同M得到的T型微通道内液滴形成过程

    Figure  17.  The droplet formation process in the T-junction microchannel obtained with different viscosity ratios M for a Newtonian continuous phase fluid (n=1.0)

    图  18  主管道流体为剪切变稠流体(n=1.2)时,不同M得到的T型微通道内液滴形成过程

    Figure  18.  The droplet formation process in the T-junction microchannel obtained with different viscosity ratios M for a shear thickening continuous phase fluid (n=1.2)

    图  19  黏度比M和幂律指数n对液滴的影响:(a)尺寸;(b)形成时间;(c)变形参数

    Figure  19.  The effects of continuous phase viscosity ratio M and power-law index n on the droplet: (a) the size; (b) the formation time; (c) the deformation index

    图  20  主管道流体为剪切变稀(n=0.8)时,不同壁面润湿性θ得到的T型微通道内液滴形成过程

    Figure  20.  The droplet formation process in the T-junction microchannel obtained with different surface wettabilities θ for a shear thinning continuous phase fluid (n=0.8)

    21  主管道流体为Newton流体(n=1.0)时,不同壁面润湿性θ得到的T型微通道内液滴形成过程

    21.  The droplet formation process in the T-junction microchannel obtained with different surface wettabilities θ for a Newtonian continuous phase fluid (n=1.0)

    图  22  主管道流体为剪切变稠流体(n=1.2)时,不同壁面润湿性得到的T型微通道内液滴形成过程

    Figure  22.  The droplet formation process in the T-junction microchannel obtained with different surface wettabilities θ for a shear thickening continuous phase fluid (n=1.2)

    图  23  润湿性θ和幂律指数n对液滴的影响:(a)尺寸;(b)形成时间;(c)相对长度

    Figure  23.  The effects of continuous phase surface wettability θ and power-law index n on the droplet: (a) the size; (b) the formation time; (c) the deformation index

  • [1] GANAN-CALVO A M, MONTANERO J M, MARTIN-BANDERAS L, et al. Building functional materials for health care and pharmacy from microfluidic principles and flow focusing[J]. Advanced Drug Delivery Reviews, 2013, 65(11/12): 1447-1469.
    [2] MATULA K, RIVELLO F, HUCK WILHELM T S. Single-cell analysis using droplet microfluidics[J]. Advanced Biosystems, 2020, 4: 1900188. doi: 10.1002/adbi.201900188
    [3] YAN L F, WANG H, BAI L, et al. Suzuki-Miyura cross-coupling reaction in droplet-based microreactor[J]. Chemical Engineering Science, 2019, 207: 352-357. doi: 10.1016/j.ces.2019.06.031
    [4] ZHAO N, LONG W, HE Y Q. Dynamic behavior and driving force model of droplet formation in a T-junction microchannel[J]. Journal of Micromechanics and Microengineering, 2019, 29: 115002. doi: 10.1088/1361-6439/ab38f5
    [5] HAN W B, CHEN X Y. Numerical simulation of the droplet formation in a T-junction microchannel by a level-set method[J]. Australian Journal of Chemistry, 2018, 71(12): 957-964. doi: 10.1071/CH18320
    [6] LI X, HE L, GU H, et al. Numerical study of droplet formation in the T-junction microchannel with wall velocity slip[J]. Energy Procedia, 2019, 158: 5459-5464. doi: 10.1016/j.egypro.2019.01.601
    [7] SHI Y, TANG G H, XIA H H. Lattice Boltzmann simulation of droplet formation in T-junction and flow focusing devices[J]. Computers and Fluids, 2014, 90: 155-163. doi: 10.1016/j.compfluid.2013.11.025
    [8] LIU H H, ZHANG Y H. Droplet formation in a T-shaped microfluidic junction[J]. Journal of Applied Physics, 2009, 106(3): 034906.
    [9] FALLAH K, TAEIBI M. Lattice Boltzmann simulation of drop formation in T-junction microchannel[J]. Journal of Molecular Liquids, 2017, 240: 723-732. doi: 10.1016/j.molliq.2017.05.108
    [10] GLAWDEL T, ELBUKEN C, REN C L. Droplet formation in microfluidic T-junction generators operating in the transitional regime Ⅱ: modeling[J]. Physical Review E, 2012, 85(1/2): 016323.
    [11] FU T T, WEI L J, ZHU C Y, et al. Flow patterns of liquid-liquid two-phase flow in non-Newtonian fluids in rectangular microchannels[J]. Chemical Engineering and Processing Process Intensification, 2015, 91: 114-120. doi: 10.1016/j.cep.2015.03.020
    [12] 黄一帆, 娄钦. T型微通道内的幂律流体液滴破裂行为的格子Boltzmann方法模拟[J]. 应用数学和力学, 2020, 41(10): 1125-1145. (HUANG Yifan, LOU Qin. Power-law fluid droplet dynamic behaviors in T-junction micro-channels with the lattice Boltzmann method[J]. Applied Mathematics and Mechanics, 2020, 41(10): 1125-1145.(in Chinese)
    [13] SANG L, HONG Y P, WANG F J. Investigation of viscosity effect on droplet formation in T-shaped microchannels by numerical and analytical methods[J]. Microfluid and Nanofluid, 2009, 6: 621-635. doi: 10.1007/s10404-008-0329-x
    [14] SONTTI S G, ATTA A. CFD analysis of microfluidic droplet formation in non-Newtonian liquid[J]. Chemical Engineering Journal, 2017, 330: 245-261. doi: 10.1016/j.cej.2017.07.097
    [15] CHIARELLO E, GUPTA A, MISTURA G, et al. Droplet breakup driven by shear thinning solutionsin a microfluidic T-junction[J]. Physical Review E, 2017, 2: 123602.
    [16] GUPTA A, SBRAGAGLIA M. Effects of viscoelasticity on droplet dynamics and break-up inmicrofluidic T-junctions: a lattice Boltzmann study[J]. The European Physical Journal E, 2016, 39: 6. doi: 10.1140/epje/i2016-16006-9
    [17] SHI Y, TANG G H. Lattice Boltzmann simulation of droplet formation in non-Newtonian fluids[J]. Communications in Computational Physics, 2015, 17: 1056-1072. doi: 10.4208/cicp.2014.m333
    [18] CHAI Z H, SHI B C, GUO Z L. A multiple-relaxation-time lattice Boltzmann model for general nonlinear anisotropic convection-diffusion equations[J]. Journal of Scientific Computing, 2016, 69: 355-390. doi: 10.1007/s10915-016-0198-5
    [19] GUO Z L. Well-balanced lattice Boltzmann model for two-phase systems[J]. Physics of Fluids, 2021, 33: 031709. doi: 10.1063/5.0041446
    [20] 梁宏, 柴振华, 施保昌. 分叉微通道内液滴动力学行为的格子Boltzmann方法模拟[J]. 物理学报, 2016, 65(20): 139-148. (LIANG Hong, CHAI Zhenhua, SHI Baochang. Lattice Boltzmann simulation of droplet dynamics in a bifurcating micro-channel[J]. Journal of Physics, 2016, 65(20): 139-148.(in Chinese)
    [21] 李梦军, 戴厚平, 魏雪丹, 等. 空间分数阶电报方程的格子Boltzmann方法[J]. 应用数学和力学, 2021, 42(5): 522-530. (LI Mengjun, DAI Houping, WEI Xuedan, et al. A lattice Boltzmann method for spatial fractional-order telegraph equations[J]. Applied Mathematics and Mechanics, 2021, 42(5): 522-530.(in Chinese)
    [22] LOU Q, HUANG Y F, LI L. Lattice Boltzmann model of gas-liquid two-phase flow of incomprssible power-law fluid and its application in the displacement problem of porous media[J]. Acta Physica Sinica, 2019, 68(21): 214702. doi: 10.7498/aps.68.20190873
    [23] YUAN P, SCHAEFER L. Equations of state in a lattice Boltzmann model[J]. Physics of Fluids, 2006, 18(4): 042101. doi: 10.1063/1.2187070
    [24] GUO Z L, ZHENG C G, SHI B C. Force imbalance in lattice Boltzmann equation for two-phase flows[J]. Physical Review E, 2011, 83: 036707. doi: 10.1103/PhysRevE.83.036707
    [25] DAVIES A R, SUMMERS J L, WILSON M C T. On a dynamic wetting model for the finite-density multiphase lattice Boltzmann method[J]. International Journal of Computational Fluid Dynamics, 2006, 20(6): 415-425. doi: 10.1080/10618560601000777
    [26] LOU Q, YANG M, XU H T. Wetting boundary condition in an improved lattice Boltzmann method for nonideal gases[J]. Communications in Computational Physics, 2018, 23(4): 1116-1130.
    [27] WIKLUND H S, LINDSTROM S B, UESAKA T. Boundary condition considerations in lattice Boltzmann formulations of wetting binary fluids[J]. Computer Physics Communications, 2011, 182(10): 2192-2200. doi: 10.1016/j.cpc.2011.05.019
    [28] WANG N N, LIU H H, ZHANG C H. Deformation and breakup of a confined droplet in shear flows with power-law rheology[J]. Journal of Rheology, 2017, 61(4): 741-758. doi: 10.1122/1.4984757
    [29] LADD A J C. Numerical simulations of particulate suspensions via a discretized Boltzmann equation part Ⅰ: theoretical foundation[J]. Journal of Fluid Mechanics, 1994, 271: 285-310. doi: 10.1017/S0022112094001771
    [30] LOU Q, GUO Z L, SHI B C. Evaluation of outflow boundary conditions for two-phase lattice Boltzmann equation[J]. Physical Review E, 2013, 87: 063301. doi: 10.1103/PhysRevE.87.063301
  • 加载中
图(24)
计量
  • 文章访问数:  734
  • HTML全文浏览量:  395
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-01
  • 录用日期:  2021-07-01
  • 修回日期:  2021-07-29
  • 网络出版日期:  2022-02-10
  • 刊出日期:  2022-03-08

目录

    /

    返回文章
    返回