留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑细胞外基质黏弹性行为的细胞黏附力学模型

程波 徐峰

程波, 徐峰. 考虑细胞外基质黏弹性行为的细胞黏附力学模型[J]. 应用数学和力学, 2021, 42(10): 1074-1080. doi: 10.21656/1000-0887.420259
引用本文: 程波, 徐峰. 考虑细胞外基质黏弹性行为的细胞黏附力学模型[J]. 应用数学和力学, 2021, 42(10): 1074-1080. doi: 10.21656/1000-0887.420259
CHENG Bo, XU Feng. A Molecular Clutch Model of Cellular Adhesion on Viscoelastic Substrate[J]. Applied Mathematics and Mechanics, 2021, 42(10): 1074-1080. doi: 10.21656/1000-0887.420259
Citation: CHENG Bo, XU Feng. A Molecular Clutch Model of Cellular Adhesion on Viscoelastic Substrate[J]. Applied Mathematics and Mechanics, 2021, 42(10): 1074-1080. doi: 10.21656/1000-0887.420259

考虑细胞外基质黏弹性行为的细胞黏附力学模型

doi: 10.21656/1000-0887.420259
基金项目: 

11761161004

12002262)

国家自然科学基金(11972280

详细信息
    作者简介:

    程波(1988—),男,助理教授,博士(E-mail: chenbo8874@163.com);徐峰(1980—),男,教授,博士(通讯作者. E-mail: fengxu@mail.xjtu.edu.cn).

    通讯作者:

    徐峰(1980—),男,教授,博士(通讯作者. E-mail: fengxu@mail.xjtu.edu.cn).

  • 中图分类号: O39

A Molecular Clutch Model of Cellular Adhesion on Viscoelastic Substrate

Funds: 

11761161004

12002262)

The National Natural Science Foundation of China(11972280

  • 摘要: 细胞外基质由大量胶原蛋白和纤维蛋白组成,这些基质蛋白形成复杂的交联网络状结构,具有黏弹性力学特性.研究表明,黏弹性基质能显著影响细胞迁移、增殖和分化等生理行为,还能影响癌症转移和组织纤维化等疾病的发生与发展.然而,细胞感知细胞外基质黏弹性力学特性的分子机制仍不清楚.该文通过建立细胞黏附力学模型,从分子层次揭示细胞黏附在细胞响应外界黏弹性力学微环境中的作用.结果表明,细胞能通过调控细胞黏附动力学(包括黏附周期和黏附形成时间)响应细胞外基质的黏弹性力学特性.通过将模型计算结果与实验现象相比较,验证了模型的正确性.细胞黏附力学模型将为组织工程中细胞力学微环境的构建奠定理论基础.
  • SCHOEN I, PRUITT BL, VOGEL V. The Yin-Yang of rigidity sensing: how forces and mechanical properties regulate the cellular response to materials[J].Annual Review of Materials Research,2013,43: 589-618.
    [2]CHAUDHURI O, LUO G, KLUMPERS D, et al. Hydrogels with tunable stress relaxation regulate stem cell fate and activity[J].Nature Materials,2016,15(3): 326-334.
    [3]CHAUDHURI O, KOSHY S T, CUNHA C D. Extracellular matrix stiffness and composition jointly regulate the induction of malignant phenotypes in mammary epithelium[J].Nature Materials,2014,13(10): 970-978.
    [4]DALBY MJ, GADEGAARD N, OREFFO R O. Harnessing nanotopography and integrin-matrix interactions to influence stem cell fate[J].Nature Materials,2014,13: 558-69.
    [5]TRAPPMANN B, GAUTROT J, CONNELLY J, et al. Extracellular-matrix tethering regulates stem-cell fate[J].Nature Materials,2012,11(7): 642-649.
    [6]CASE L B, WATERMAN C M. Integration of actin dynamics and cell adhesion by a three-dimensional, mechanosensitive molecular clutch[J].Nature Cell Biology,2015,17(8): 955-963.
    [7]NING L, LU S, YAN Z, et al. Mechanokinetics of receptor-ligand interactions in cell adhesion[J].Acta Mechanica Sinica,2015,31: 248-258.
    [8]CHENG B, LIN M, HUANG G, et al. Cellular mechanosensing of the biophysical microenvironment: a review of mathematical models of biophysical regulation of cell responses[J].Physics of Life Reviews,2017,22/23: 88-119.
    [9]CHENG B, LIN M, HUANG G, et al. Energetics: an emerging frontier in cellular mechanosensing: reply to comments on “cellular mechanosensing of the biophysical microenvironment: a review of mathematical models of biophysical regulation of cell responses”[J].Physics of Life Reviews,2017,22/23: 130-135.
    [10]MARUTHAMUTHU V, SABASS B, SCHWARZ U S, et al. Cell-ECM traction force modulates endogenous tension at cell-cell contacts[J].Proceedings of the National Academy of Sciences of the United States of America,2011,108(12): 4708-4713.
    [11]KOCH T M, STEFAN M, NAVID B, et al. 3D traction forces in cancer cell invasion[J].Plos One,2012,7(3): e33476. DOI:10.1371/ journal.pone.0033476.
    [12]CHAN C E, ODDE D J. Traction dynamics of filopodia on compliant substrates[J].Science,2008,322: 1687-1691.
    [13]BANGASSER B L, ROSENFELD S, ODDE D J. Determinants of maximal force transmission in a Motor-Clutch model of cell traction in a compliant microenvironment[J].Biophysical Journal,2013,105(3): 581-592.
    [14]BANGASSER B L, ODDE D J. Master equation-based analysis of a motor-clutch model for cell traction force: cellular and molecular bioengineering [J].Cell Mol Bioeng,2013, 6(4): 449-459.
    [15]BANGASSER B L, SHAMSAN G A, CHAN C E, et al. Shifting the optimal stiffness for cell migration[J].Nature Communications,2017,8: 15313.
    [16]CHENG B, LIN M, LI Y, et al. An integrated stochastic model of matrix-stiffness-dependent filopodial dynamics[J].Biophysical Journal,2016,111(9): 2051-2061.
    [17]GEERLIGS M, PETERS G W, ACKERMANS P A, et al. Linear viscoelastic behavior of subcutaneous adipose tissue[J].Biorheology,2008,45: 677-688.
    [18]BABAEI B, ABRAMOWITCH S D, ELSON E L, et al. A discrete spectral analysis for determining quasi-linear viscoelastic properties of biological materials[J].Journal of the Royal Society Interface,2015,12(113): 20150707.
    [19]CHAUDHURI O, GU L, DARNELL M, et al. Substrate stress relaxation regulates cell spreading[J].Nature Communications,2015,6: 6365.
  • 加载中
计量
  • 文章访问数:  907
  • HTML全文浏览量:  227
  • PDF下载量:  96
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-31
  • 修回日期:  2021-09-23
  • 刊出日期:  2021-10-01

目录

    /

    返回文章
    返回