留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于弹性壳的三维群体细胞动力学模型

于鹏宇 许琨 陈鹏程 李博

于鹏宇, 许琨, 陈鹏程, 李博. 基于弹性壳的三维群体细胞动力学模型[J]. 应用数学和力学, 2021, 42(10): 1062-1073. doi: 10.21656/1000-0887.420264
引用本文: 于鹏宇, 许琨, 陈鹏程, 李博. 基于弹性壳的三维群体细胞动力学模型[J]. 应用数学和力学, 2021, 42(10): 1062-1073. doi: 10.21656/1000-0887.420264
YU Pengyu, XU Kun, CHEN Pengcheng, LI Bo. Three-Dimensional Collective Cell Dynamics Model Basedon Elastic Shells[J]. Applied Mathematics and Mechanics, 2021, 42(10): 1062-1073. doi: 10.21656/1000-0887.420264
Citation: YU Pengyu, XU Kun, CHEN Pengcheng, LI Bo. Three-Dimensional Collective Cell Dynamics Model Basedon Elastic Shells[J]. Applied Mathematics and Mechanics, 2021, 42(10): 1062-1073. doi: 10.21656/1000-0887.420264

基于弹性壳的三维群体细胞动力学模型

doi: 10.21656/1000-0887.420264
基金项目: 

国家自然科学基金(11922207;11961131005)

详细信息
    作者简介:

    于鹏宇(1998—),男,博士生(E-mail: ypy21@mails.tsinghua.edu.cn);许琨(1999—),男,博士生(E-mail: xk21@mails.tsinghua.edu.cn);陈鹏程(1996—),男,博士生(E-mail: cpc17@mails.tsinghua.edu.cn);李博(1982—),男,副教授,博士,博士生导师(通讯作者. E-mail: libome@tsinghua.edu.cn).

    通讯作者:

    李博(1982—),男,副教授,博士,博士生导师(通讯作者. E-mail: libome@tsinghua.edu.cn).

  • 中图分类号: R318.1|O39

Three-Dimensional Collective Cell Dynamics Model Basedon Elastic Shells

Funds: 

The National Natural Science Foundation of China(11922207;11961131005)

  • 摘要: 群体细胞迁移常见于胚胎发育、伤口愈合和肿瘤侵袭等各种生理和病理过程中,关于其动力学的研究对于揭示群体细胞迁移机理、深刻理解有关生物过程十分重要.该文构建了群体细胞的三维可变形壳状模型,提出了一种考虑细胞弹性形变和细胞间接触与黏附相互作用的群体细胞动力学理论,并发展了相应的数值算法.基于所发展的动力学模型与算法,对多细胞在嚢腔里的受限旋转运动进行了模拟,复现了相关实验现象,分析了细胞极性、细胞形变、胞间相互作用等因素对多细胞三维动力学的影响规律.
  • 林绍珍, 陈鹏程, 李博, 等. 群体细胞动力学研究进展[J]. 科学通报, 2020,65(28/29): 3100

    -3117.(LIN Shaozhen, CHEN Pengcheng, LI Bo, et al. Advances in collective cell dynamics[J].Chinese Science Bulletin,2020,65(28/29): 3100-3117.(in Chinese))
    [2]BRUGUES A, ANON E, CONTE V, et al. Forces driving epithelial wound healing[J]. Nature Physics,2014,10(9): 683-690.
    [3]HANAHAN D, WEINBERG R A. Hallmarks of cancer: the next generation[J].Cell,2011,144(5): 646-674.
    [4]PLODINEC M, LOPARIC M, MONNIER C A, et al. The nanomechanical signature of breast cancer[J].Nature Nanotechnology,2012,7(11): 757-765.
    [5]RATHEESH A, BELYAEVA V, SIEKHAUS D E. Drosophila immune cell migration and adhesion during embryonic development and larval immune responses[J]. Current Opinion in Cell Biology,2015,36: 71-79.
    [6]LECUIT T, LENNE P-F, MUNRO E. Force generation, transmission, and integration during cell and tissue morphogenesis[J].Annual Review of Cell and Developmental Biology,2011,27: 157-184.
    [7]KONG D, JI B H, DAI L H. Nonlinear mechanical modeling of cell adhesion[J]. Journal of Theoretical Biology,2008,250(1): 75-84.
    [8]KONG D, JI B H, DAI L H. Stability of adhesion clusters and cell reorientation under lateral cyclic tension[J].Biophysical Journal,2008,95(8): 4034-4044.
    [9]VEDULA S R K, LEONG M C, LAI T L, et al. Emerging modes of collective cell migration induced by geometrical constraints[J].Proceedings of the National Academy of Sciences,2012,109(32): 12974-12979.
    [10]HE S J, SU Y W, JI B H, et al. Some basic questions on mechanosensing in cell-substrate interaction[J].Journal of the Mechanics and Physics of Solids,2014,70: 116-135.
    [11]THEVENEAU E, MARCHANT L, KURIYAMA S, et al. Collective chemotaxis requires contact-dependent cell polarity[J].Developmental Cell,2010,19(1): 39-53.
    [12]COHEN D J, NELSON W J, MAHARBIZ M M. Galvanotactic control of collective cell migration in epithelial monolayers[J].Nature Materials,2014,13(4): 409-417.
    [13]HONDA H. Description of cellular patterns by Dirichlet domains: the two-dimensional case[J].Journal of Theoretical Biology,1978,72(3): 523-543.
    [14]WELIKY M, OSTER G. The mechanical basis of cell rearrangement, Ⅰ: epithelial morphogenesis during Fundulus epiboly[J]. Development,1990,109(2): 373-386.
    [15]WELIKY M, MINSUK S, KELLER R, et al. Notochord morphogenesis in Xenopus laevis: simulation of cell behavior underlying tissue convergence and extension[J].Development,1991,113(4): 1231-1244.
    [16]LI B, SUN S X. Coherent motions in confluent cell monolayer sheets[J].Biophysical Journal,2014,107(7): 1532-1541.
    [17]XU G K, LIU Y, LI B. How do changes at the cell level affect the mechanical properties of epithelial monolayers[J].Soft Matter,2015,11(45): 8782-8788.
    [18]LIN S Z, LI B, LAN G, et al. Activation and synchronization of the oscillatory morphodynamics in multicellular monolayer[J].Proceedings of the National Academy of Sciences,2017,114(31): 8157-8162.
    [19]LIN S Z, XUE S L, LI B, et al. An oscillating dynamic model of collective cells in a monolayer[J].Journal of the Mechanics and Physics of Solids,2018,112: 650-666.
    [20]QIN Y, LI Y H, ZHANG L Y, et al. Stochastic fluctuation-induced cell polarization on elastic substrates: a cytoskeleton-based mechanical model[J].Journal of the Mechanics and Physics of Solids,2020,137: 103872.
    [21]OKUDA S, INOUE Y, EIRAKU M, et al. Vertex dynamics simulations of viscosity-dependent deformation during tissue morphogenesis[J].Biomechanics and Modeling in Mechanobiology,2015,14(2): 413-425.
    [22]MISRA M, AUDOLY B, KEVREKIDIS I G, et al. Shape transformations of epithelial shells[J].Biophysical Journal,2016,110(7): 1670-1678.
    [23]KRAJNC M, DASGUPTA S, ZIHERL P, et al. Fluidization of epithelial sheets by active cell rearrangements[J].Physical Review E,2018,98(2): 022409.
    [24]BIELMEIER C, ALT S, WEICHSELBERGER V, et al. Interface contractility between differently fated cells drives cell elimination and cyst formation[J]. Current Biology,2016,26(5): 563-574.
    [25]VICSEK T, CZIRK A, BEN-JACOB E, et al. Novel type of phase transition in a system of self-driven particles[J].Physical Review Letters,1995,75(6): 1226-1229.
    [26]SZABO B, SZÖLLSI G, GNCI B, et al. Phase transition in the collective migration of tissue cells: experiment and model[J].Physical Review E,2006,74(6): 061908.
    [27]BINDSCHADLER M, MCGRATH J L. Sheet migration by wounded monolayers as an emergent property of single-cell dynamics[J].Journal of Cell Science,2007,120(5): 876-884.
    [28]CHAT H, GINELLI F, GRGOIRE G, et al. Modeling collective motion: variations on the Vicsek model[J].The European Physical Journal B,2008,64(3): 451-456.
    [29]HENKES S, FILY Y, MARCHETTI M C. Active jamming: self-propelled soft particles at high density[J].Physical Review E,2011,84(4): 040301.
    [30]DRASDO D, HOEHME S. Modeling the impact of granular embedding media, and pulling versus pushing cells on growing cell clones[J].New Journal of Physics,2012,14(5): 055025.
    [31]CHEN P C, LIN S Z, XU G K, et al. Three-dimensional collective cell motions in an acinus-like lumen[J]. Journal of Biomechanics,2019,84: 234-242.
    [32]BOROMAND A, SIGNORIELLO A, YE F, et al. Jamming of deformable polygons[J]. Physical Review Letters,2018,121(24): 248003.
    [33]GRANER F, GLAZIER J A. Simulation of biological cell sorting using a two-dimensional extended Potts model[J].Physical Review Letters,1992,69(13): 2013-2016.
    [34]SCIANNA M, PREZIOSI L, WOLF K. A cellular Potts model simulating cell migration on and in matrix environments[J].Mathematical Biosciences & Engineering,2013,10(1): 235-261.
    [35]CHIANG M, MARENDUZZO D. Glass transitions in the cellular Potts model[J]. Europhysics Letters,2016,116(2): 28009.
    [36]LBER J, ZIEBERT F, ARANSON I S. Collisions of deformable cells lead to collective migration[J].Scientific Reports,2015,5(1): 9172.
    [37]PALMIERI B, BRESLER Y, WIRTZ D, et al. Multiple scale model for cell migration in monolayers: elastic mismatch between cells enhances motility[J].Scientific Reports,2015,5(1): 11745.
    [38]SHAO D, LEVINE H, RAPPEL W J. Coupling actin flow, adhesion, and morphology in a computational cell motility model[J]. Proceedings of the National Academy of Sciences,2012,109(18): 6851-6856.
    [39]OHTA T, OHKUMA T. Deformable self-propelled particles[J].Physical Review Letters,2009,102(15): 154101.
    [40]HE S J, GREEN Y, SAEIDI N, et al. A theoretical model of collective cell polarization and alignment[J]. Journal of the Mechanics and Physics of Solids,2020,137: 103860.
    [41]HONDA H, TANEMURA M, NAGAI T. A three-dimensional vertex dynamics cell model of space-filling polyhedra simulating cell behavior in a cell aggregate[J].Journal of Theoretical Biology,2004,226(4): 439-453.
    [42]GMEZ-GLVEZ P, VICENTE-MUNUERA P, TAGUA A, et al. Scutoids are a geometrical solution to three-dimensional packing of epithelia[J].Nature Communications,2018,9(1): 2960.
    [43]OKUDA S, MIURA T, INOUE Y, et al. Combining turing and 3D vertex models reproduces autonomous multicellular morphogenesis with undulation, tubulation, and branching[J].Scientific Reports,2018,8(1): 2386.
    [44]GERHART J, DANILCHIK M, DONIACH T, et al. Cortical rotation of the Xenopus egg: consequences for the anteroposterior pattern of embryonic dorsal development[J].Development,1989,107: 37-51.
    [45]DIEFENBACH T J, KOEHNCKE N K, GOLDBERG J I. Characterization and development of rotational behavior in Helisoma embryos: role of endogenous serotonin[J].Journal of Neurobiology,1991,22(9): 922-934.
    [46]HAIGO S L, BILDER D. Global tissue revolutions in a morphogenetic movement controlling elongation[J].Science,2011,331(6020): 1071-1074.
    [47]TANNER K, MORI H, MROUE R, et al. Coherent angular motion in the establishment of multicellular architecture of glandular tissues[J].Proceedings of the National Academy of Sciences,2012,109(6): 1973-1978.
    [48]WANG H, LACOCHE S, HUANG L, et al. Rotational motion during three-dimensional morphogenesis of mammary epithelial acini relates to laminin matrix assembly[J].Proceedings of the National Academy of Sciences,2013,110(1): 163-168.
    [49]JADHAO V, THOMAS C K, DE LA CRUZ M O. Electrostatics-driven shape transitions in soft shells[J].Proceedings of the National Academy of Sciences,2014,111(35): 12673-12678.
    [50]韦进. 三维空间任意多面体体积的一种坐标计算法[J]. 湖州师专学报, 1997,19(5): 67-73.(WEI Jin. A coordinate calculation method for the volume of any polyhedron in three-dimensional space[J].Journal of Huzhou Teachers College,1997,19(5): 67-73.(in Chinese))
    [51]WEEKS J D, CHANDLER D, ANDERSEN H C. Role of repulsive forces in determining the equilibrium structure of simple liquids[J].The Journal of Chemical Physics,1971,54(12): 5237-5247.
  • 加载中
计量
  • 文章访问数:  635
  • HTML全文浏览量:  87
  • PDF下载量:  97
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-02
  • 修回日期:  2021-09-10

目录

    /

    返回文章
    返回