留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

细胞趋硬性迁移的研究进展

杨月华 姜洪源

杨月华, 姜洪源. 细胞趋硬性迁移的研究进展[J]. 应用数学和力学, 2021, 42(10): 999-1007. doi: 10.21656/1000-0887.420265
引用本文: 杨月华, 姜洪源. 细胞趋硬性迁移的研究进展[J]. 应用数学和力学, 2021, 42(10): 999-1007. doi: 10.21656/1000-0887.420265
YANG Yuehua, JIANG Hongyuan. Research Advances in Cell Durotaxis[J]. Applied Mathematics and Mechanics, 2021, 42(10): 999-1007. doi: 10.21656/1000-0887.420265
Citation: YANG Yuehua, JIANG Hongyuan. Research Advances in Cell Durotaxis[J]. Applied Mathematics and Mechanics, 2021, 42(10): 999-1007. doi: 10.21656/1000-0887.420265

细胞趋硬性迁移的研究进展

doi: 10.21656/1000-0887.420265
基金项目: 

国家自然科学基金(12002338;12025207;11872357)

中央高校基本科研业务费(WK2090000017)

安徽省自然科学基金(2008085QA24)

统筹推进世界一流大学和一流学科建设专项资金(YD2480002001)

详细信息
    作者简介:

    杨月华(1992—),男,特任副研究员(E-mail: hz293033@ustc.edu.cn);姜洪源(1979—),男,教授,博士生导师(通讯作者. E-mail: jianghy@ustc.edu.cn).

    通讯作者:

    姜洪源(1979—),男,教授,博士生导师(通讯作者. E-mail: jianghy@ustc.edu.cn).

  • 中图分类号: O3

Research Advances in Cell Durotaxis

Funds: 

The National Natural Science Foundation of China(12002338

12025207

11872357)

  • 摘要: 细胞力学微环境可以调控许多细胞生理功能.特别地,在细胞力学微环境各种信号梯度的作用下,细胞可以定向地迁移.这些定向迁移可以显著影响伤口愈合、癌细胞转移和组织形貌发育等生理过程.目前为止,细胞的定向迁移主要包括:在化学药物梯度作用下的趋药性迁移,在黏附分子梯度作用下的趋触性迁移,以及在细胞外基质硬度梯度作用下的趋硬性迁移等.虽然细胞趋药性和趋触性迁移的力学机理得到了很好的研究,但是关于细胞趋硬性迁移的机制和作用还不清楚.该文重点介绍了细胞趋硬性的相关实验和理论研究进展,分析了不同研究间的联系与区别,讨论了细胞趋硬性迁移的潜在力学机制,提出尚存在的问题和未来可能的研究方向.
  • FRIEDL P, GILMOUR D. Collective cell migration in morphogenesis, regeneration and cancer[J].Nature Reviews Molecular Cell Biology,2009,10(7): 445-457.
    [2]ROCA-CUSACHS P, SUNYER R, TREPAT X. Mechanical guidance of cell migration: lessons from chemotaxis[J].Current Opinion in Cell Biology,2013,25(5): 543-549.
    [3]KOSER D E, THOMPSON A J, FOSTER S K, et al. Mechanosensing is critical for axon growth in the developing brain[J].Nature Neuroscience,2016,19(12): 1592-1598.
    [4]TOZLUOGLU M, TOURNIER A L, JENKINS R P, et al. Matrix geometry determines optimal cancer cell migration strategy and modulates response to interventions[J].Nature Cell Biology,2013,15(7): 751-762.
    [5]DONA E, BARRY J D, VALENTIN G, et al. Directional tissue migration through a self-generated chemokine gradient[J].Nature,2013,503: 285-289.
    [6]GUNAWAN R C, SILVESTRE J, GASKINS H R, et al. Cell migration and polarity on microfabricated gradients of extracellular matrix proteins[J].Langmuir,2006,22(9): 4250-4258.
    [7]WEBER M, HAUSCHILD R, SCHWARZ J, et al. Interstitial dendritic cell guidance by haptotactic chemokine gradients[J].Science,2013,339(6117): 328-332.
    [8]SMITH J T, TOMFOHR J K, WELLS M C, et al. Measurement of cell migration on surface-bound fibronectin gradients[J].Langmuir,2004,20(19): 8279-8286.
    [9]ZHU M, TAO H, SAMANI M, et al. Spatial mapping of tissue properties in vivo reveals a 3D stiffness gradient in the mouse limb bud[J].Proceedings of the National Academy of Sciences,2020,117(9): 4781-4791.
    [10]LO C M, WANG H B, DEMBO M, et al. Cell movement is guided by the rigidity of the substrate[J].Biophysical Journal,2000,79(1): 144-152.
    [11]DUCHEZ B J, DOYLE A D, DIMITRIADIS E K, et al. Durotaxis by human cancer cells[J].Biophysical Journal,2019,116(4): 670-683.
    [12]VINCENT L G, CHOI Y S, ALONSO-LATORRE B, et al. Mesenchymal stem cell durotaxis depends on substrate stiffness gradient strength[J].Biotechnology Journal,2013,8(4): 472-484.
    [13]HARTMAN C D, ISENBERG B C, CHUA S G, et al. Vascular smooth muscle cell durotaxis depends on extracellular matrix composition[J].Proceedings of the National Academy of Sciences,2016,113(40): 11190-11195.
    [14]ZAARI N, RAJAGOPALAN P, KIM S K, et al. Photopolymerization in microfluidic gradient generators: microscale control of substrate compliance to manipulate cell response[J].Advanced Materials,2004,16(23/24): 2133-2137.
    [15]YANG Y, XIE K, JIANG H. Durotaxis index of 3T3 fibroblast cells scales with stiff-to-soft membrane tension polarity[J].Biophysical Journal,2020,119(7): 1427-1438.
    [16]WONG J Y, VELASCO A, RAJAGOPALAN P, et al. Directed movement of vascular smooth muscle cells on gradient-compliant hydrogels[J].Langmuir,2003,19(5): 1908-1913.
    [17]ISENBERG B C, DIMILLA P A, WALKER M, et al. Vascular smooth muscle cell durotaxis depends on substrate stiffness gradient strength[J].Biophysical Journal,2009,97(5): 1313-1322.
    [18]CHOI Y S, VINCENT L G, LEE A R, et al. The alignment and fusion assembly of adipose-derived stem cells on mechanically patterned matrices[J].Biomaterials,2012,33(29): 6943-6951.
    [19]HADDEN W J, YOUNG J L, HOLLE A W, et al. Stem cell migration and mechanotransduction on linear stiffness gradient hydrogels[J].Proceedings of the National Academy of Sciences,2017,114(22): 5647-5652.
    [20]MCKENZIE A J, HICKS S R, SVEC K V, et al. The mechanical microenvironment regulates ovarian cancer cell morphology, migration, and spheroid disaggregation[J].Scientific Reports,2018,8(1): 7228.
    [21]LACHOWSKI D, CORTES E, PINK D, et al. Substrate rigidity controls activation and durotaxis in pancreatic stellate cells[J].Scientific Reports,2017,7(1): 2506.
    [22]LEVENTAL K R, YU H, KASS L, et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling[J].Cell,2009,139(5): 891-906.
    [23]ISOMURSU A, PARK K-Y, HOU J, et al. Negative durotaxis: cell movement toward softer environments[R/OL]. 2020. DOI: 10.1101/2020.10.27.357178.
    [24]SUNYER R, CONTE V, ESCRIBANO J, et al. Collective cell durotaxis emerges from long-range intercellular force transmission[J].Science,2016,353(6304): 1157-1161.
    [25]MARTINEZ J S, SCHLENOFF J B, KELLER T C S. Collective epithelial cell sheet adhesion and migration on polyelectrolyte multilayers with uniform and gradients of compliance[J].Experimental Cell Research,2016,346(1): 17-29.
    [26]SUNYER R, TREPAT X. Durotaxis[J].Current Biology,2020,30(9): R383-R387.
    [27]TEE S-Y, FU J, CHEN C S, et al. Cell shape and substrate rigidity both regulate cell stiffness[J].Biophysical Journal,2011,100(5): L25-L27.
    [28]LEIPZIG N D, SHOICHET M S. The effect of substrate stiffness on adult neural stem cell behavior[J].Biomaterials,2009,30(36): 6867-6878.
    [29]LIU N, ZHOU M, ZHANG Q, et al. Effect of substrate stiffness on proliferation and differentiation of periodontal ligament stem cells[J].Cell Proliferation,2018,51(5): 12478.
    [30]ENGLER A J, SEN S, SWEENEY H L, et al. Matrix elasticity directs stem cell lineage specification[J].Cell,2006,126(4): 677-689.
    [31]CHAUDHURI O, GU L, KLUMPERS D, et al. Hydrogels with tunable stress relaxation regulate stem cell fate and activity[J].Nature Materials,2016,15(3): 326-334.
    [32]XIE K, YANG Y, JIANG H. Controlling cellular volume via mechanical and physical properties of substrate[J].Biophysical Journal,2018,114(3): 675-687.
    [33]GALBRAITH C G, YAMADA K M, GALBRAITH J A. Polymerizing actin fibers position integrins primed to probe for adhesion sites[J].Science,2007,315(5814): 992-995.
    [34]KAWANO T, KIDOAKI S. Elasticity boundary conditions required for cell mechanotaxis on microelastically-patterned gels[J].Biomaterials,2011,32(11): 2725-2733.
    [35]WONG S, GUO W H, WANG Y L. Fibroblasts probe substrate rigidity with filopodia extensions before occupying an area[J].Proceedings of the National Academy of Sciences,2014,111(48): 17176-17181.
    [36]CHAO P G, SHENG S C, CHANG W R. Micro-composite substrates for the study of cell-matrix mechanical interactions[J].Journal of the Mechanical Behavior of Biomedical Materials,2014,38: 232-241.
    [37]RAAB M, SWIFT J, DINGAL P C D P, et al. Crawling from soft to stiff matrix polarizes the cytoskeleton and phosphoregulates myosin-Ⅱ heavy chain[J].The Journal of Cell Biology,2012,199(4): 669-683.
    [38]BRECKENRIDGE M T, DESAI R A, YANG M T, et al. Substrates with engineered step changes in rigidity induce traction force polarity and durotaxis[J].Cellular and Molecular Bioengineering,2014,7: 26-34.
    [39]HAN S J. Spatial and temporal coordination of traction forces in one-dimensional cell migration[J].Cell Adhesion & Migration,2016,10(5): 529-539.
    [40]WANG H B, DEMBO M, HANKS S K, et al. Focal adhesion kinase is involved in mechanosensing during fibroblast migration[J].Proceedings of the National Academy of Sciences,2001,98(20): 11295-11300.
    [41]ZMURCHOK C, COLLETE J, RAJAGOPAL V, et al. Membrane tension can enhance adaptation to maintain polarity of migrating cells[J].Biophysical Journal,2020,119(8): 1617-1629.
    [42]WINKLER B, ARANSON I S, ZIEBERT F. Membrane tension feedback on shape and motility of eukaryotic cells[J].Physica D: Nonlinear Phenomena,2016,318/319: 26-33.
    [43]HOUK A R, JILKINE A, MEJEAN C O, et al. Membrane tension maintains cell polarity by confining signals to the leading edge during neutrophil migration[J].Cell,2012,148(1/2): 175-188.
    [44]LIEBER A D, SCHWEITZER Y, KOZLOV M M, et al. Front-to-rear membrane tension gradient in rapidly moving cells[J].Biophysical Journal,2015,108(7): 1599-1603.
    [45]HETMANSKI J H R, DE BELLY H, BUSNELLI I, et al. Membrane tension orchestrates rear retraction in matrix-directed cell migration[J].Developmental Cell,2019,51(4): 460-475.
    [46]BATCHELDER E L, HOLLOPETER G, CAMPILLO C, et al. Membrane tension regulates motility by controlling lamellipodium organization[J].Proceedings of the National Academy of Sciences,2011,108(28): 11429-11434.
    [47]WEI C, WANG X, ZHENG M, et al. Calcium gradients underlying cell migration[J].Current Opinion in Cell Biology,2012,24(2): 254-261.
    [48]MISSIRLIS D, SPATZ J P. Combined effects of PEG hydrogel elasticity and cell-adhesive coating on fibroblast adhesion and persistent migration[J].Biomacromolecules,2014,15(1): 195-205.
    [49]MAIURI P, RUPPRECHT J-F, WIESER S, et al. Actin flows mediate a universal coupling between cell speed and cell persistence[J].Cell,2015,161(2): 374-386.
    [50]HOUSE D, WALKER M L, WU Z, et al. Tracking of cell populations to understand their spatio-temporal behavior in response to physical stimuli[J].IEEE,2009,978(1): 187-193.
    [51]YU G, FENG J, MAN H, et al. Phenomenological modeling of durotaxis[J].Physical Review E,2017,96(1): 010402.
    [52]DOERING C R, MAO X, SANDER L M. Random walker models for durotaxis[J].Physical Biology,2018,15(6): 066009.
    [53]NOVIKOVA E A, RAAB M, DISCHER D E, et al. Persistence-driven durotaxis: generic, directed motility in rigidity gradients[J].Physical Review Letters,2017,118(7): 078103.
    [54]PEYTON S R, PUTNAM A J. Extracellular matrix rigidity governs smooth muscle cell motility in a biphasic fashion[J].Journal of Cellular Physiology,2005,204(1): 198-209.
    [55]BERSHADSKY A D, BALABAN N Q, GEIGER B. Adhesion-dependent cell mechanosensitivity[J].Annual Review of Cell and Developmental Biology,2003,19(1): 677-695.
    [56]SHEMESH T, GEIGER B, BERSHADSKY A D, et al. Focal adhesions as mechanosensors: a physical mechanism[J].Proceedings of the National Academy of Sciences,2005,102(35): 12383-12388.
    [57]LAZOPOULOS K A, STAMENOVIC D. Durotaxis as an elastic stability phenomenon[J].Journal of Biomechanics,2008,41(6): 1289-1294.
    [58]RENS E G, MERKS R M H. Cell shape and durotaxis explained from cell-extracellular matrix forces and focal adhesion dynamics[J].IScience,2020,23(9): 101488.
    [59]ESCRIBANO J, SUNYER R, SNCHEZ M T, et al. A hybrid computational model for collective cell durotaxis[J].Biomechanics and Modeling in Mechanobiology,2018,17(4): 1037-1052.
    [60]HASSAN A-R, BIEL T, KIM T. Mechanical model for durotactic cell migration[J].ACS Biomaterials Science & Engineering,2019,5(8): 3954-3963.
    [61]CHAN C E, ODDE D J. Traction dynamics of filopodia on compliant substrates[J].Science,2008,322(5908): 1687-1691.
    [62]BANGASSER B L, ROSENFELD S S, ODDE D J. Determinants of maximal force transmission in a motor-clutch model of cell traction in a compliant microenvironment[J].Biophysical Journal,2013,105(3): 581-592.
    [63]BANGASSER B L, SHAMSAN G A, CHAN C E, et al. Shifting the optimal stiffness for cell migration[J].Nature Communications,2017, 8(1): 15313.
  • 加载中
计量
  • 文章访问数:  649
  • HTML全文浏览量:  90
  • PDF下载量:  126
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-03
  • 修回日期:  2021-09-10

目录

    /

    返回文章
    返回