留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于耦合纯无网格方法时间分数阶下孤立子波碰撞过程的数值模拟研究

李悦 蒋戎戎 蒋涛

李悦,蒋戎戎,蒋涛. 基于耦合纯无网格方法时间分数阶下孤立子波碰撞过程的数值模拟研究 [J]. 应用数学和力学,2022,43(9):1016-1025 doi: 10.21656/1000-0887.420278
引用本文: 李悦,蒋戎戎,蒋涛. 基于耦合纯无网格方法时间分数阶下孤立子波碰撞过程的数值模拟研究 [J]. 应用数学和力学,2022,43(9):1016-1025 doi: 10.21656/1000-0887.420278
LI Yue, JIANG Rongrong, JIANG Tao. Numerical Simulation of the Solitary Wave Collision Process in Time Fractional Orders Based on the Coupled Pure Meshless Method[J]. Applied Mathematics and Mechanics, 2022, 43(9): 1016-1025. doi: 10.21656/1000-0887.420278
Citation: LI Yue, JIANG Rongrong, JIANG Tao. Numerical Simulation of the Solitary Wave Collision Process in Time Fractional Orders Based on the Coupled Pure Meshless Method[J]. Applied Mathematics and Mechanics, 2022, 43(9): 1016-1025. doi: 10.21656/1000-0887.420278

基于耦合纯无网格方法时间分数阶下孤立子波碰撞过程的数值模拟研究

doi: 10.21656/1000-0887.420278
基金项目: 国家自然科学基金(11501495);中国博士后科学基金(2015M581869;2015T80589)
详细信息
    作者简介:

    李悦(1997— ),女,硕士生(E-mail:1215720935@qq.com)

    蒋涛(1978—),男,副教授,博士(通讯作者. E-mail:jtrjl_2007@126.com)

  • 中图分类号: O29

Numerical Simulation of the Solitary Wave Collision Process in Time Fractional Orders Based on the Coupled Pure Meshless Method

  • 摘要:

    为数值预测时间分数阶耦合非线性Schrödinger (TF-CNLS)方程描述的孤立子波非弹性碰撞过程,首次发展了一种耦合纯无网格有限点集法(coupled finite pointset method, CFPM)。其构造过程为:1) 对时间分数阶Caputo导数项采用一种高精度的差分格式;2) 对空间导数采用基于Taylor展开和加权最小二乘法的有限粒子法(FPM)离散格式;3) 对区域进行局部加密和采用稳定性好的双曲余弦核函数以提高数值精度。数值研究中,首先,运用CFPM对有解析解的一维TF-CNLS方程进行求解,分析了节点均匀分布或局部加密情况下的误差和收敛阶,表明给出的耦合无网格法具有近似二阶精度和易局部加密求解的灵活性;其次,运用CFPM对无解析解一维TF-CNLS方程描述的孤立子波非弹性碰撞过程进行了数值预测,其出现的波塌缩现象与整数阶下出现的多波现象截然不同;最后,与有限差分结果作对比,表明CFPM数值预测时间分数阶下孤立子波非弹性碰撞过程的复杂传播现象是可靠的。

  • 图  1  α=0.7,不同时刻下Re(u),Im(u)的解析解与数值解

    Figure  1.  The exact and numerical solutions of Re(u) and Im(u) with α=0.7 at different moments

    图  2  t=30时孤立波函数|u|的数值结果对比: (a) α=1.0; ( b) α=0.9; (c) α=0.7

    Figure  2.  Comparisons of the numerical results of isolated wave function |u| at t=30: (a) α=1.0; ( b) α=0.9; (c) α=0.7

    图  3  CFPM对孤立波函数|u|的数值结果:(a) α=1.0; (b) α=0.9; (c) α=0.7

    Figure  3.  Numerical results of the CFPM for isolated wave function |u|: (a) α=1.0; (b) α=0.9; (c) α=0.7

    图  4  t=30时刻下,孤立波函数|u1|的数值结果对比: (a) α=1.0; (b) α=0.9; (c) α=0.7

    Figure  4.  Comparisons of the numerical results of isolated wave function |u1| at t=30: (a) α=1.0; (b) α=0.9; (c) α=0.7

    图  5  CFPM对孤立波函数|u1|的数值结果:(a) α=1.0; (b) α=0.9; (c) α=0.7

    Figure  5.  Numerical results of the CFPM for isolated wave function |u1|: (a) α=1.0; (b) α=0.9; (c) α=0.7

    图  6  CFPM对孤立波函数|u2|的数值结果:(a) α=1.0; (b) α=0.9; (c) α=0.7

    Figure  6.  Numerical results of the CFPM for isolated wave function |u2|: (a) α=1.0; (b) α=0.9; (c) α=0.7

    表  1  α=0.9,t=1.0时刻下的RMS误差和收敛阶

    Table  1.   The RMS errors and convergence rates with α=0.9 at t=1.0

    parameterN=21N=41N=81
    ERMS(Im(u))4.121 9E−31.100 9E−32.945 9E−4
    Cr1.901.90
    ERMS(Re(u))5.256 1E−31.404 5E−33.765 2E−4
    Cr1.901.90
    ERMS(|u|)6.682 5E−31.784 5E−34.778 9E−4
    Cr1.901.90
    下载: 导出CSV

    表  2  α=0.7,t=1.0时刻下的RMS误差和收敛阶

    Table  2.   The RMS errors and convergence rates with α=0.7 at t=1.0

    parameterN=21N=41N=81
    ERMS(Im(u))6.521 3E−31.769 0E−34.798 5E−4
    Cr1.881.88
    ERMS(Re(u))8.431 1E−32.292 4E−36.219 1E−4
    Cr1.881.88
    ERMS(|u|)1.068 1E−22.895 5E−37.852 6E−4
    Cr1.881.88
    下载: 导出CSV

    表  3  α=0.7时,不同时刻下均匀分布与局部加密情况下的RMS误差

    Table  3.   The RMS errors of uniform distribution and local refinement with α=0.7 at different moments

    time0.10.30.50.81.0
    uniform distribution1.191 6E−52.160 5E−47.279 3E−41.381 2E−32.895 5E−3
    local refinement1.110 6E−52.031 0E−47.092 2E−41.151 2E−32.571 2E−3
    下载: 导出CSV
  • [1] BANDRAUK A D, SHEN H. High-order split-step exponential methods for solving coupled nonlinear Schrödinger equations[J]. Journal of Physics A: Mathematical and General, 1994, 27(21): 7147-7155. doi: 10.1088/0305-4470/27/21/030
    [2] CAI J X. Multisymplectic schemes for strongly coupled Schrödinger system[J]. Applied Mathematics and Computation, 2010, 216(8): 2417-2429. doi: 10.1016/j.amc.2010.03.087
    [3] DEHGHAN M, TALEEI A. A Chebyshev pseudospectral multidomain method for the soliton solution of coupled nonlinear Schrödinger equations[J]. Computer Physics Communications, 2011, 182(12): 2519-2529. doi: 10.1016/j.cpc.2011.07.009
    [4] TANG Y N, ZHOU J L. Mixed interaction solutions for the coupled nonlinear Schrödinger equations[J]. Modern Physics Letters B, 2021, 35(10): 2150004. doi: 10.1142/S0217984921500044
    [5] LASKIN N. Fractional quantum mechanics[J]. Physical Review E, 2000, 62: 3135-3145. doi: 10.1103/PhysRevE.62.3135
    [6] LASKIN N. Fractional Schrödinger equation[J]. Physical Review E, 2002, 66: 56108. doi: 10.1103/PhysRevE.66.056108
    [7] MAO Z P, KARNIADAKIS G E. A spectral method (of exponential convergence) for singular solutions of the diffusion equation with general two-sided fractional derivative[J]. SIAM Journal on Numerical Analysis, 2018, 56(1): 24-49. doi: 10.1137/16M1103622
    [8] 黄凤辉, 郭柏灵. 一类时间分数阶偏微分方程的解[J]. 应用数学和力学, 2010, 31(7): 781-790 doi: 10.3879/j.issn.1000-0887.2010.07.003

    HUANG Fenghui, GUO Boling. General solution for a class of time fractional partial differential equation[J]. Applied Mathematics and Mechanics, 2010, 31(7): 781-790.(in Chinese) doi: 10.3879/j.issn.1000-0887.2010.07.003
    [9] CHEN M N, ZENG S H, LU D Q, et al. Optical solitons, self-focusing, and wave collapse in a space-fractional Schrödinger equation with a Kerr-type nonlinearity[J]. Physical Review E, 2018, 98(2): 22211. doi: 10.1103/PhysRevE.98.022211
    [10] CAI W T, HE D D, PAN K J. A linearized energy-conservative finite element method for the nonlinear Schrödinger equation with wave operator[J]. Applied Numerical Mathematics, 2019, 140: 183-198. doi: 10.1016/j.apnum.2019.02.005
    [11] DAI P F, WU Q B. An efficient block Gauss-Seidel iteration method for the space fractional coupled nonlinear Schrödinger equations[J]. Applied Mathematics Letters, 2021, 117: 107116. doi: 10.1016/j.aml.2021.107116
    [12] CASTILLO P, GOMEZ S. Conservative local discontinuous Galerkin methods for a generalized system of strongly coupled nonlinear Schrödinger equations[J]. Communications in Nonlinear Science and Numerical Simulation, 2021, 99: 105836. doi: 10.1016/j.cnsns.2021.105836
    [13] 张小华, 邓霁恒. 三维稳态对流扩散问题的无网格求解算法研究[J]. 应用数学和力学, 2014, 35(11): 1249-1258 doi: 10.3879/j.issn.1000-0887.2014.11.008

    ZHANG Xiaohua, DENG Jiheng. Research on the meshless solving algorithm for 3D steady convection-diffusion problems[J]. Applied Mathematics and Mechanics, 2014, 35(11): 1249-1258.(in Chinese) doi: 10.3879/j.issn.1000-0887.2014.11.008
    [14] RESENDIZ-FLORES E O, SAUCEDO-ZENDEJO F R. Numerical simulation of coupled fluid flow and heat transfer with phase change using the finite pointset method[J]. International Journal of Thermal Sciences, 2018, 133: 13-21. doi: 10.1016/j.ijthermalsci.2018.07.008
    [15] TIWARI S, KUHNERT J. Finite Pointset Method Based on the Projection Method for Simulations of the Incompressible Navier-Stokes Equations[M]. Berlin: Springer, 2003.
    [16] LOVOIE J L, OSLER T J, TREMBLAY R. Fractional derivatives and special functions[J]. SIAM Review, 1976, 18(2): 240-268. doi: 10.1137/1018042
    [17] YANG X F, PENG S L, LIU M B. A new kernel function for SPH with applications to free surface flows[J]. Applied Mathematical Modelling, 2014, 38(15/16): 3822-3833.
    [18] DENG W H. Finite element method for the space and time fractional Fokker-Planck equation[J]. SIAM Journal on Numerical Analysis, 2009, 47(1): 204-226. doi: 10.1137/080714130
    [19] GAO G H, SUN Z Z, ZHANG H W. A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications[J]. Journal of Computational Physics, 2014, 259: 33-50. doi: 10.1016/j.jcp.2013.11.017
    [20] LIU M B, LIU G R. Smoothed particle hydrodynamics (SPH): an overview and recent developments[J]. Archives of Computational Methods in Engineering, 2010, 17: 25-76. doi: 10.1007/s11831-010-9040-7
    [21] WEI L L, ZHANG X D, KUMAR S, et al. A numerical study based on an implicit fully discrete local discontinuous Galerkin method for the time-fractional coupled Schrödinger system[J]. Computers & Mathematics With Applications, 2012, 64(8): 2603-2615.
    [22] HICDURMAZ B. Finite difference method for a nonlinear fractional Schrödinger equation with Neumann condition[J]. E-Journal of Analysis and Applied Mathematics, 2020(1): 67-80.
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  635
  • HTML全文浏览量:  200
  • PDF下载量:  107
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-13
  • 修回日期:  2021-11-12
  • 网络出版日期:  2021-09-29
  • 刊出日期:  2022-09-30

目录

    /

    返回文章
    返回