留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新冠病毒蛋白酶与抗病毒药物分子相互作用的分子模拟研究

吴徐伟 李星宇 李华 李振海 陈伟 李德昌

吴徐伟, 李星宇, 李华, 李振海, 陈伟, 李德昌. 新冠病毒蛋白酶与抗病毒药物分子相互作用的分子模拟研究[J]. 应用数学和力学, 2021, 42(10): 1081-1090. doi: 10.21656/1000-0887.420280
引用本文: 吴徐伟, 李星宇, 李华, 李振海, 陈伟, 李德昌. 新冠病毒蛋白酶与抗病毒药物分子相互作用的分子模拟研究[J]. 应用数学和力学, 2021, 42(10): 1081-1090. doi: 10.21656/1000-0887.420280
WU Xuwei, LI Xingyu, LI Hua, LI Zhenhai, CHEN Wei, LI Dechang. Molecular Simulation Study on the Interaction Between SARS-CoV-2 Main Protease and the Antiviral Inhibitors[J]. Applied Mathematics and Mechanics, 2021, 42(10): 1081-1090. doi: 10.21656/1000-0887.420280
Citation: WU Xuwei, LI Xingyu, LI Hua, LI Zhenhai, CHEN Wei, LI Dechang. Molecular Simulation Study on the Interaction Between SARS-CoV-2 Main Protease and the Antiviral Inhibitors[J]. Applied Mathematics and Mechanics, 2021, 42(10): 1081-1090. doi: 10.21656/1000-0887.420280

新冠病毒蛋白酶与抗病毒药物分子相互作用的分子模拟研究

doi: 10.21656/1000-0887.420280
详细信息
    作者简介:

    吴徐伟(1997—),男,硕士生(E-mail: 21924076@zju.edu.cn);李振海(1983—),男,副教授,博士(通讯作者. E-mail: lizhshu@shu.edu.cn);李德昌(1984—),男,副教授,博士(通讯作者. E-mail: dcli@zju.edu.cn).

    通讯作者:

    李振海(1983—),男,副教授,博士(通讯作者. E-mail: lizhshu@shu.edu.cn)

  • 中图分类号: O39|R392

Molecular Simulation Study on the Interaction Between SARS-CoV-2 Main Protease and the Antiviral Inhibitors

  • 摘要: 该工作通过研究抗病毒药物与新冠病毒Mpro的相互作用,理解药物分子对Mpro动力学的影响,对Mpro抑制剂的设计提供帮助.采用分子对接方法获得了Mpro与药物分子结合的复合物结构及其亲和力.常规的分子动力学模拟结果显示,测试的抗病毒药物均不能很好抑制Mpro结合位点处的动力学.通过副本交换的分子动力学模拟充分采样Mpro与不同药物分子结合的构象,分析不同药物分子对Mpro结合口袋形状及动力学产生的影响.结果显示不同药物分子通过与结合位点周围不同位置处氨基酸形成的不同的氢键网络,改变了Mpro结合口袋的形状.上述结果提示在未来的药物设计中,应充分考虑潜在抑制剂与Mpro结合口袋形成的氢键网络的重要性.
  • [2]HUANG C L, WANG Y M, LI X W, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China[J].The Lancet,2020,395(10223): 497-506.
    ZHU N, ZHANG D Y, LI X W, et al. A novel coronavirus from patients with pneumonia in China, 2019[J].The New England Journal of Medicine,2020,382(8): 727-733.
    [3]LU R J, ZHAO X, LI J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding[J].The Lancet,2020,395(10224): 565-574.
    [4]JIN Z M, DU X Y, XU Y C, et al. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors[J].Nature,2020,582(7811): 289-293.
    [5]HSU W C, CHANG H W, CHOU C Y, et al. Critical assessment of important regions in the subunit association and catalytic action of the severe acute respiratory syndrome coronavirus main protease[J].Journal of Biological Chemistry,2005,280(24): 22741-22748.
    [6]GHOSH A K, OSSWALD H L, PRATO G. Recent progress in the development of HIV-1 protease inhibitors for the treatment of HIV/AIDS[J].Journal of Medicinal Chemistry,2016,59(11): 5172-5208.
    [7]LI D C, LIU M S, HUANG Y G, et al. Identifying the molecular mechanics and binding dynamics characteristics of potent inhibitors to HIV-1 protease[J].Chemical Biology & Drug Design,2012,80(3): 440-454.
    [8]KITCHEN D B, DECORNEZ H, BAJORATH J, et al. Docking and scoring in virtual screening for drug discovery: methods and applications[J].Nature Reviews Drug Discovery,2004,3(11): 935-949.
    [9]DANIELS K G, SUO Y, OAS T G. Conformational kinetics reveals affinities of protein conformational states[J].Proceedings of the National Academy of Sciences,2015,112(30): 9352-9357.
    [10]RUVINSKY A M, KIRYS T, LLYA A, et al. Structure fluctuations and conformational changes in protein binding[J].Journal of Bioinformatics and Computational Biology,2012,10(2): 1241002.
    [11]SALMASO V, MORO S. Bridging molecular docking to molecular dynamics in exploring ligand-protein recognition process: an overview[J].Frontiers in Pharmacology,2018,9: 923.
    [12]LI D C, JI B H. Protein conformational transitions coupling with ligand interactions: simulations from molecules to medicine[J].Medicine in Novel Technology and Devices,2019,3: 100026.
    [13]HOLLINGSWORTH S A, DROR R O. Molecular dynamics simulation for all[J].Neuron,2018,99(6): 1129-1143.
    [14]YANG Y I, SHAO Q, ZHANG J, et al. Enhanced sampling in molecular dynamics[J].The Journal of Chemical Physics,2019,151(7): 070902.
    [15]BU B, TONG X, HU Y C, et al. N-terminal acetylation preserves α-synuclein from oligomerization by blocking intermolecular hydrogen bonds[J].ACS Chemical Neuroscience,2017,8(10): 2145-2151.
    [16]LI Z H, KONO H. Investigating the influence of arginine dimethylation on nucleosome dynamics using all-atom simulations and kinetic analysis[J].The Journal of Physical Chemistry B,2018,122(42): 9625-9634.
    [17]JO S, KIM T, LYER V G, et al. CHARMM-GUI: a web-based graphical user interface for CHARMM[J].Journal of Computational Chemistry,2008,29(11): 1859-1865.
    [18]LEE J, CHENG X, WEI S, et al. CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field[J].Journal of Chemical Theory and Computation,2015,12(1): 405-413.
    [19]GASTEIGER J, MARSILI M. A new model for calculating atomic charges in molecules[J].Tetrahedron Letters,1978,19(34): 3181-3184.
    [20]GASTEIGER J, MARSILI M. Iterative partial equalization of orbital electronegativity: a rapid access to atomic charges[J].Tetrahedron,1980,36(22): 3219-3228.
    [21]EBERHARDT J, SANTOS-MARTINS D, STEFANO F, et al. AutoDock Vina 1.2.0: new docking methods, expanded force field, and python bindings[J].Journal of Chemical Information and Modeling,2021,61(8): 3891-3898.
    [22]TROTT O, OLSON A J. Autodock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading[J].Journal of Computational Chemistry,2010,31(2): 455-461.
    [23]ABRAHAM M J, MURTOLA T, HESS B, et al. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers[J].SoftwareX,2015,1/2: 19-25.
    [24]HUANG J, MACKERELL A J. CHARMM36 all-atom additive protein force field: validation based on comparison to NMR data[J].Journal of Computational Chemistry,2013,34(25): 2135-2145.
    [25]BUSSI G, DONADIO D, PARRINELLO M. Canonical sampling through velocity rescaling[J].The Journal of Chemical Physics,2007,126(1): 014101.
    [26]BERENDSEN H J C, POSTMA J P M, GUNSTEREN W F, et al. Molecular dynamics with coupling to an external bath[J].The Journal of Chemical Physics,1984,81(8): 3684-3690.
    [27]HUMPHREY W, DALKE A, SCHULTEN K. VMD: visual molecular dynamics[J].Journal of Molecular Graphics,1996,14(1): 33-38.
    [28]PATRIKSSON A, VAN DER SPOEL D. A temperature predictor for parallel tempering simulations[J].Physical Chemistry Chemical Physics,2008,10(15): 2073-2077.
  • 加载中
计量
  • 文章访问数:  1032
  • HTML全文浏览量:  258
  • PDF下载量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-13
  • 修回日期:  2021-09-27
  • 刊出日期:  2021-10-01

目录

    /

    返回文章
    返回