留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

细胞骨架与细胞外基质的力学建模与分析

龚博 林骥 王彦中 钱劲

龚博, 林骥, 王彦中, 钱劲. 细胞骨架与细胞外基质的力学建模与分析[J]. 应用数学和力学, 2021, 42(10): 1024-1044. doi: 10.21656/1000-0887.420302
引用本文: 龚博, 林骥, 王彦中, 钱劲. 细胞骨架与细胞外基质的力学建模与分析[J]. 应用数学和力学, 2021, 42(10): 1024-1044. doi: 10.21656/1000-0887.420302
GONG Bo, LIN Ji, WANG Yanzhong, QIAN Jin. Mechanical Modeling and Analyses of Cytoskeleton and Extracellular Matrix[J]. Applied Mathematics and Mechanics, 2021, 42(10): 1024-1044. doi: 10.21656/1000-0887.420302
Citation: GONG Bo, LIN Ji, WANG Yanzhong, QIAN Jin. Mechanical Modeling and Analyses of Cytoskeleton and Extracellular Matrix[J]. Applied Mathematics and Mechanics, 2021, 42(10): 1024-1044. doi: 10.21656/1000-0887.420302

细胞骨架与细胞外基质的力学建模与分析

doi: 10.21656/1000-0887.420302
基金项目: 

国家自然科学基金(12072316;12125205);中国博士后科学基金(528000X92003)

详细信息
    作者简介:

    龚博(1987—),男,博士(E-mail: gongbo2005@126.com);林骥(1990—),男,博士(E-mail: linji900108@163.com);王彦中(1993—),男,博士(E-mail: 772187295@qq.com);钱劲(1978—),男,教授,博士,博士生导师(通讯作者. E-mail: jqian@zju.edu.cn).

    通讯作者:

    钱劲(1978—),男,教授,博士,博士生导师(通讯作者. E-mail: jqian@zju.edu.cn).

  • 中图分类号: O34|O39

Mechanical Modeling and Analyses of Cytoskeleton and Extracellular Matrix

Funds: 

The National Natural Science Foundation of China(12072316;12125205)

  • 摘要: 细胞和生物组织需要适应人体内复杂的力学生物学环境,一方面要被动地承受外部环境中的机械力,另一方面在组织生长、修复等生理过程中要积极主动地产生机械力调整自身的结构和形态.细胞和生物组织的力学性质主要由细胞骨架和细胞外基质决定,它们在微观上都是生物聚合物交联形成的复杂的、各向异性的三维网络结构.这方面早期的力学研究主要集中在通过各种网络模型,理解其普遍存在的非线性响应和硬化行为.近年来随着实验方法、理论建模和计算机模拟技术的大幅进步,这些生命介质的力学性质及其潜在的力学机理得到了更深入的理解.该文回顾了近些年细胞骨架和细胞外基质研究方面取得的部分进展,主要侧重动态交联属性、生物聚合物力学化学耦合赋予的主动材料属性、交联网络塑性和断裂,以及力学训练引发的自适应网络重构.发展细胞骨架与细胞外基质的力学模型与计算方法,分析该类生命介质的复杂力学行为,理解这些力学行为的潜在机制,可以加深我们对细胞和组织的力学生物学认识,并为人造生物材料和细胞组织工程提供基础和参考.
  • ALBERTS B. Molecular biology of the cell[J].Artificial Life,2002,10(2): 82-95.
    [2]GARDEL M L, KASZA K E, BRANGWYNNE C P, et al. Chapter 19: mechanical response of cytoskeletal networks[J].Methods in Cell Biology,2008,89(8): 487-519.
    [3]EHRLICHER A J, NAKAMURA F, HARTWIG J H, et al. Mechanical strain in actin networks regulates FilGAP and integrin binding to filamin A[J].Nature,2011,478(7368): 260-263.
    [4]ZHU C, BAO G, WANG N. Cell mechanics: mechanical response, cell adhesion, and molecular deformation[J].Annual Review of Biomedical Engineering,2000,2: 189-226.
    [5]BURLA F, MULLA Y, VOS B E, et al. From mechanical resilience to active material properties in biopolymer networks[J].Nature Reviews Physics,2019,1(4): 249-263.
    [6]LEE H, PELZ B, FERRER J M, et al. Cytoskeletal deformation at high strains and the role of cross-link unfolding or unbinding[J].Cellular and Molecular Bioengineering,2009,2(1): 28-38.
    [7]KOENDERINK G H, DOGIC Z, NAKAMURA F, et al. An active biopolymer network controlled by molecular motors[J].Proceedings of the National Academy of Sciences of the United States of America,2009,106(36): 15192-15197.
    [8]WANG N, INGBER D. Probing transmembrane mechanical coupling and cytomechanics using magnetic twisting cytometry[J].Biochemistry and Cell Biology,1995,73(7/8): 327-335.
    [9]GARDEL M L, SHIN J H, MACKINTOSH F C, et al. Elastic behavior of cross-linked and bundled actin networks[J].Science,2004,304(5675): 1301-1305.
    [10]STORM C, PASTORE J J, MACKINTOSH F C, et al. Nonlinear elasticity in biological gels[J].Nature,2005,435(7039): 191-194.
    [11]TREPAT X, DENG L, AN S S, et al. Universal physical responses to stretch in the living cell[J].Nature,2007,447(7144): 592-595.
    [12]KANG H, WEN Q, JANMEY P A, et al. Nonlinear elasticity of stiff filament networks: strain stiffening, negative normal stress, and filament alignment in fibrin gels[J].Journal of Physical Chemistry B,2009,113(12): 3799-3805.
    [13]KASZA K E, BROEDERSZ C P, KOENDERINK G H, et al. Actin filament length tunes elasticity of flexibly cross-linked actin networks[J].Biophysical Journal,2010,99(4): 1091-1100.
    [14]BROEDERSZ C P, KASZA K E, JAWERTH L M, et al. Measurement of nonlinear rheology of cross-linked biopolymer gels[J].Soft Matter,2010,6(17): 4120-4127.
    [15]CHAUDURI O, PAREKH S H, FLETCHER D A. Reversible stress softening of actin networks[J].Nature,2007,445(7125): 295-298.
    [16]DIDONNA B A, LEVINE A J. Unfolding cross-linkers as rheology regulators in F-actin networks[J].Physical Review E,2007,75(4): 041909.
    [17]WOLFF L, FERNANDEZ P, KROY K. Resolving the stiffening-softening paradox in cell mechanics[J].PLoS One,2012,7(7): e40063.
    [18]KEITH B, CHRISTOPHE G. Focal adhesions, stress fibers and mechanical tension[J].Experimental Cell Research,2016,343(1): 14-20.
    [19]INGBER D E, WANG N, STAMENOVIC D. Tensegrity, cellular biophysics, and the mechanics of living systems[J].Reports on Progress in Physics,2014,77(4): 046603.
    [20]GRINNELL F. Fibroblast biology in three-dimensional collagen matrices[J].Trends in Cell Biology,2003,13(5): 264-269.
    [21]LANIR Y. Mechanisms of residual stress in soft tissues[J].Journal of Biomechanical Engineering,2009,131(4): 044506.
    [22]BAUSCH A R, KROY K. A bottom-up approach to cell mechanics[J].Nature Physics,2006,2(4): 231-238.
    [23]BROEDERSZ C P, MACKINTOSH F C. Modeling semiflexible polymer networks[J].Reviews of Modern Physics,2014,86(3): 995-1036.
    [24]PRITCHARD R H, HUANG Y Y S, TERENTJEV E M. Mechanics of biological networks: from the cell cytoskeleton to connective tissue[J].Soft Matter,2014,10(12):1864-1884.
    [25]HORTON E R, BYRON A, ASKARI J A, et al. Definition of a consensus integrin adhesome and its dynamics during adhesion complex assembly and disassembly[J].Nature Cell Biology,2015,17(12): 1577-1587.
    [26]程传亮, 龚博, 钱劲. 生物聚合物网络的力学响应[J]. 应用数学和力学, 2016,37(5): 441-458.(CHENG Chuanliang, GONG Bo, QIAN Jin. Mechanical responses of crosslinked biopolymer networks[J].Applied Mathematics and Mechanics,2016,37(5): 441-458.(in Chinese))
    [27]BEESE L, STOBBS G, COHEN C. Microtubule structure at 18 Å resolution[J].Journal of Molecular Biology,1987,194(2): 257-264.
    [28]LI H L, DEROSIER D J, NICHOLSON W V, et al. Microtubule structure at 8 Å resolution[J].Structure,2002,10(10): 1317-1328.
    [29]DE PABLO P J, SCHAAP I A T, MACKINTOSH F C, et al. Deformation and collapse of microtubules on the nanometer scale[J].Physical Review Letters,2003,91(9): 098101.
    [30]CONDE C, CACERES A. Microtubule assembly, organization and dynamics in axons and dendrites[J].Nature Reviews Neuroscience,2009,10(5): 319-332.
    [31]ODDE D J, MA L, BRIGGS A H, et al. Microtubule bending and breaking in living fibroblast cells[J].Journal of Cell Science,1999,112(19): 3283-3288.
    [32]KAPITEIN L C, HOOGENRAAD C C. Building the neuronal microtubule cytoskeleton[J].Neuron,2015,87(3): 492-506.
    [33]ISHIKAWA H, BISCHOFF R, HOLTZER H. Mitosis and intermediate-sized filaments in developing skeletal muscle[J].The Journal of Cell Biology,1968,38(3): 538-555.
    [34]HERRMANN H, BAR H, KREPLAK L, et al. Intermediate filaments: from cell architecture to nanomechanics[J].Nature Reviews Molecular Cell Biology,2007,8(7): 562-573.
    [35]RAUB C B, SURESH V, KRASIRVA T, et al. Noninvasive assessment of collagen gel microstructure and mechanics using multiphoton microscopy[J].Biophysical Journal,2007,92(6): 2212-2222.
    [36]LODISH H, BERK A, ZIPURSKY S L, et al.Molecular Cell Biology[M]. New York: W H Freeman, 2000: 951-959.
    [37]FLETCHER D A, MULLINS R D. Cell mechanics and the cytoskeleton[J].Nature,2010,463(7280): 485-492.
    [38]RUBINSTEIN M, COLBY R H.Polymer Physics[M]. Oxford: Oxford University Press, 2003: 10-200.
    [39]MARKO J F, SIGGIA E D. Stretching DNA[J].Macromolecules,1995,28(26): 8759-8770.
    [40]孙训方, 方孝淑, 关来泰. 材料力学[M]. 北京: 高等教育出版社,2009: 9-38.(SUN Xunfang, FANG Xiaoshu, GUAN Laitai.Mechanics of Materials[M]. Beijing: China Higher Education Press, 2009: 9-38.(in Chinese))
    [41]曲东明, 韩梅, 温进坤. 肌动蛋白结合蛋白[J]. 中国细胞生物学学报, 2007,29(2): 219-224.(QU Dongming, HAN Mei, WEN Jinkun. Actin binding protein[J].Chinese Journal of Cell Biology,2007,29(2): 219-224.(in Chinese))
    [42]MACHESKY L M, MULLINS R D, HIGGS H N, et al. Scar, a WASp-related protein, activates nucleation of actin filaments by the Arp2/3 complex[J].Proceedings of the National Academy of Sciences of the United States of America,1999,96(7): 3739-3744.
    [43]ALVARADO J, SHEINMAN M, SHARMA A, et al. Force percolation of contractile active gels[J].Soft Matter,2017,13(34): 5624-5644.
    [44]MOGILNER A, RUBINSTEIN B. The physics of filopodial protrusion[J].Biophysical Journal,2005,89(2): 782-795.
    [45]BASNET N, NEDOZRALOVA H, CREVENNA A H, et al. Direct induction of microtubule branching by microtubule nucleation factor SSNA1[J].Nature Cell Biology,2018,20(10): 1172-1180.
    [46]DOGTEROM M, KOENDERINK G H. Actin-microtubule crosstalk in cell biology[J].Nature Reviews Molecular Cell Biology,2019,20(1): 38-54.
    [47]LIN Y C, BROEDERSZ C P, ROWAT A C, et al. Divalent cations crosslink vimentin intermediate filament tail domains to regulate network mechanics[J].Journal of Molecular Biology,2010,399(4): 637-644.
    [48]KAGAN H M, LI W D. Lysyl oxidase: properties, specificity, and biological roles inside and outside of the cell[J].Journal of Cellular Biochemistry,2003,88(4): 660-672.
    [49]LICUP A J, MNSTER S, SHARMA A, et al. Stress controls the mechanics of collagen networks[J].Proceedings of the National Academy of Sciences of the United States of America,2015,112(31): 9573-9578.
    [50]SHARMA A, LICUP A J, JANSEN K A, et al. Strain-controlled criticality governs the nonlinear mechanics of fibre networks[J].Nature Physics,2016,12(6): 584-587.
    [51]GASTYNSKA N, KRISHNAKUMAR G S, CAMPODONI E, et al. 3D porous collagen scaffolds reinforced by glycation with ribose for tissue engineering application[J].Biomedical Materials,2017,12(5): 055002.
    [52]VALERO C, AMAVEDA H, MORA M, et al. Combined experimental and computational characterization of crosslinked collagen-based hydrogels[J].PLoS One,2018,13(4): e0195820.
    [53]FLETCHER D A, GEISSLER P L. Active biological materials[J].Annual Review of Physical Chemistry,2009,60: 469-486.
    [54]GONG B, LIN J, QIAN J. Growing actin networks regulated by obstacle size and shape[J].Acta Mechanica Sinica,2017,33(2): 222-233.
    [55]POLLARD T D, COOOPER J A. Actin, a central player in cell shape and movement[J].Science,2009,326(5957): 1208-1212.
    [56]DICKINSON R B. Models for actin polymerization motors[J].Journal of Mathematical Biology,2009,58(1/2): 81-103.
    [57]MARTIN P. Wound healing-aiming for perfect skin regeneration[J].Science,1997,276(5309): 75-81.
    [58]POLLARD T D. Mechanics of cytokinesis in eukaryotes[J].Current Opinion in Cell Biology,2010,22(1): 50-56.
    [59]RIDLEY A J, SCHWARTZ M A, BURRIDGE K, et al. Cell migration: integrating signals from front to back[J].Science,2003,302(5651): 1704-1709.
    [60]XU K, ZHPNG G, ZHUANG X. Actin, spectrin, and associated proteins form a periodic cytoskeletal structure in axons[J].Science,2013,339(6118): 452-456.
    [61]JIA Y B, WANG Y Z, NIU L L, et al. The plasticity of nanofibrous matrix regulates fibroblast activation in fibrosis[J].Advanced Healthcare Materials,2021,10(8): 2001865.
    [62]HAHN I, VOELZMANN A, LIEW Y T, et al. The model of local axon homeostasis-explaining the role and regulation of microtubule bundles in axon maintenance and pathology[J].Neural Development,2019,14(1): 1-28.
    [63]VOS B E, LIEBRAND L C, VAHABI M, et al. Programming the mechanics of cohesive fiber networks by compression[J].Soft Matter,2017,13(47): 8886-8893.
    [64]VAN OOSTEN A S G, VAHABI M, LICUP A J, et al. Uncoupling shear and uniaxial elastic moduli of semiflexible biopolymer networks: compression-softening and stretch-stiffening[J].Scientific Reports,2016,6: 19270.
    [65]MACKINTOSH F C, KAS J, JANMEY P A. Elasticity of semiflexible biopolymer networks[J].Biophysical Journal,1996,70(2): 4425-4428.
    [66]LIU J, KOENDERINK G H, KASZA K E, et al. Visualizing the strain field in semiflexible polymer networks: strain fluctuations and nonlinear rheology of F-actin gels[J].Physical Review Letters,2007,98(19): 198304.
    [67]MORSE D C. Viscoelasticity of concentrated isotropic solutions of semiflexible polymers, 3: linear rheology[J].Macromolecules,1999,32(18): 5934-5943.
    [68]LIN Y C, YAO N Y, BROEDERSZ C P, et al. Origins of elasticity in intermediate filament networks[J].Physical Review Letters,2010,104(5): 058101.
    [69]HUISMAN E M, VAN DILLEN T, ONCK P R, et al. Three-dimensional cross-linked F-actin networks: relation between network architecture and mechanical behavior[J].Physical Review Letters,2007,99(20): 208103.
    [70]KURNIAWAN N A, ENEMARK S, RAJAGOPALAN R. The role of structure in the nonlinear mechanics of cross-linked semiflexible polymer networks[J].Journal of Chemical Physics,2012,136(6): 065101.
    [71]LIN Y, WEI X, QIAN J, et al. A combined finite element-Langevin dynamics (FEM-LD) approach for analyzing the mechanical response of bio-polymer networks[J].Journal of the Mechanics and Physics of Solids,2014,62(1): 2-18.
    [72]ONCK P R, KOEMAN T, VAN DILLEN T, et al. Alternative explanation of stiffening in cross-linked semiflexible networks[J].Physical Review Letters,2005,95(17): 178102.
    [73]LICUP A, SHARMA A, MACKINTOSH H C. Elastic regimes of subisostatic athermal fiber networks[J].Physical Review E,2016,93(1): 012407.
    [74]WILHELM J, FREY E. Elasticity of stiff polymer networks[J].Physical Review Letters,2003,91(10): 108103.
    [75]LIELEG O, CLAESSENS M, BAUSCH A R. Structure and dynamics of cross-linked actin networks[J].Soft Matter,2010,6(2): 218-225.
    [76]BROEDERSZ C P, MAO X, LUBENSKY T C, et al. Criticality and isostaticity in fibre networks[J].Nature Physics,2011,7(12): 983-988.
    [77]BROEDERSZ C P, SHEINMAN M, MACKINTOSH F C. Filament-length-controlled elasticity in 3D fiber networks[J].Physical Review Letters,2012,108(7): 078102.
    [78]LINSTROM S B, KULACHENKO A, JAWERTH L M, et al. Finite-strain, finite-size mechanics of rigidly cross-linked biopolymer networks[J].Soft Matter,2013,9(30): 7302-7313.
    [79]BROEDERSZ C P, STORM C, MACKINTOSH F C. Nonlinear elasticity of composite networks of stiff biopolymers with flexible linkers[J].Physical Review Letters,2008,101(11): 118103.
    [80]WEI X, ZHU Q, QIAN J, et al. Response of biopolymer networks governed by the physical properties of cross-linking molecules[J].Soft Matter,2016,12(9): 2537-2541.
    [81]HAN Y L, RONCERAY P, XU G Q, et al. Cell contraction induces long-ranged stress stiffening in the extracellular matrix[J].Proceedings of the National Academy of Sciences of the United States of America,2018,115(16): 4075-4080.
    [82]ADAMIAK K, SIONKOWSKA A. Current methods of collagen cross-linking: review[J].International Journal of Biological Macromolecules,2020,161: 550-560.
    [83]GONG B, LIN J, WEI X, et al. Cross-linked biopolymer networks with active motors: mechanical response and intra-network transport[J].Journal of the Mechanics and Physics of Solids,2019,127: 80-93.
    [84]LIELEG O, BAUSCH A R. Cross-linker unbinding and self-similarity in bundled cytoskeletal networks[J].Physical Review Letters,2007,99(15): 158105.
    [85]WEI X, FANG C, GONG B, et al. Viscoelasticity of 3D actin networks dictated by the mechanochemical characteristics of cross-linkers[J].Soft Matter,2021. DOI: 10.1039/d0sm01558j.
    [86]程传亮. 纤维交联网络的力学响应[D]. 硕士学位论文. 杭州:浙江大学, 2016. (CHENG Chuanliang. Mechanical responses of filamentous network [D]. Master Thesis. Hangzhou: Zhejiang University, 2016.(in Chinese))
    [87]ABHILASH A S, PUROHIT P K, JOSHI S P. Stochastic rate-dependent elasticity and failure of soft fibrous network s[J].Soft Matter,2012,8(26): 7004-7016.
    [88]Bell G I. Models for the specific adhesion of cells to cells[J].Science,1978,200(4342): 618-627.
    [89]BELL G I, DEMBO M, BONGRAND P. Cell adhesion: competition between nonspecific repulsion and specific bonding[J].Biophysical Journal,1984,45(6): 1051-1064.
    [90]KIM T, HWANG W, KAMM R. Dynamic role of cross-linking proteins in actin rheology[J].Biophysical Journal,2011,101(7): 1597-1603.
    [91]BONAKDAR N, GERUM R, KUHN M, et al. Mechanical plasticity of cells[J].Nature Materials,2016,15(10): 1090-1094.
    [92]FISCHER-FRIEDRICH E, TOYODA Y, CATTIN C J, et al. Rheology of the active cell cortex in mitosis[J].Biophysical Journal,2016,111(3): 589-600.
    [93]CLEMENT R, DEHAPIOT B, COLLINET C, et al. Viscoelastic dissipation stabilizes cell shape changes during tissue morphogenesis[J].Current Biology,2017,27(20): 3132-3142.
    [94]GITTES F, MACKINTOSH F C. Dynamic shear modulus of a semiflexible polymer network[J].Physical Review E,1998,58(2): R1241-R1244.
    [95]KOENDERINK G H, ATAKHORRAMI M, MACKINTOSH F C, et al. High-frequency stress relaxation in semiflexible polymer solutions and networks[J].Physical Review Letters,2006,96(13): 138307.
    [96]GIELER T, BALL R, WEOTZ D A. Strain hardening of fractal colloidal gels[J].Physical Review Letters,1999,82(5): 1064-1067.
    [97]FERRER J M, LEE H, CHEN J, et al. Measuring molecular rupture forces between single actin filaments and actin-binding proteins[J].Proceedings of the National Academy of Sciences of the United States of America,2008,105(27): 9221-9226.
    [98]COURSON D S, ROCK R S. Actin cross-link assembly and disassembly mechanics for alpha-actinin and fascin[J].Journal of Biological Chemistry,2010,285(34): 26350-26357.
    [99]LIELEG O, SCHMOLLER K M, CLAESSENS M, et al. Cytoskeletal polymer networks: viscoelastic properties are determined by the microscopic interaction potential of cross-links[J].Biophysical Journal,2009,96(11): 4725-4732.
    [100]BROEDERSZ C P, DEPKEN M, YA N Y, et al. Cross-link-governed dynamics of biopolymer networks[J].Physical Review Letters,2010,105(23): 238101.
    [101]MULLER K W, BRUINSMA R F, LIELEG O, et al. Rheology of semiflexible bundle networks with transient linkers[J].Physical Review Letters,2014,112(23): 238102.
    [102]MAIER M, MULLER K W, HEUSSINGER C, et al. A single charge in the actin binding domain of fascin can independently tune the linear and non-linear response of an actin bundle network[J].European Physical Journal E,2015,38(5): 50.
    [103]GRALKA M, KRO K. Inelastic mechanics: a unifying principle in biomechanics[J].Biochimica et Biophysica Acta: Molecular Cell Research,2015,1853(11): 3025-3037.
    [104]WEINS A, SCHIONDORFF J S, NAKAMURA F, et al. Disease-associated mutant alpha-actinin-4 reveals a mechanism for regulating its F-actin-binding affinity[J].Proceedings of the National Academy of Sciences of the United States of America,2007,104(41): 16080-16085.
    [105]HUANG D L, BAX N A, BUCKLEY C D, et al. Vinculin forms a directionally asymmetric catch bond with F-actin[J].Science,2017,357(6532): 703-706.
    [106]YAO N Y, BROEDERSZC P, DEPKEN M, et al. Stress-enhanced gelation: a dynamic nonlinearity of elasticity[J].Physical Review Letters,2013,110(1): 018103.
    [107]WEI X, FANG C, GONG B, et al. Time-dependent response of bio-polymer networks regulated by catch and slip bond-like kinetics of cross-linker[J].Journal of the Mechanics and Physics of Solids,2021,147: 104267.
    [108]NAM S, HU K H, BUTTE M J, et al. Strain-enhanced stress relaxation impacts nonlinear elasticity in collagen gels[J].Proceedings of the National Academy of Sciences of the United States of America,2016,113(20): 5492-5497.
    [109]LOU J Z, SYPWERS R, NAM S M, et al. Stress relaxing hyaluronic acid-collagen hydrogels promote cell spreading, fiber remodeling, and focal adhesion formation in 3D cell culture[J].Biomaterials,2018,154: 213-222.
    [110]GONG Z, SZCZESNY S E, CALIARI S R, et al. Matching material and cellular timescales maximizes cell spreading on viscoelastic substrates[J].Proceedings of the National Academy of Sciences of the United States of America,2018,115(12): E2686-E2695.
    [111]BENNETT M, CANTINI M, REBOUD J, et al. Molecular clutch drives cell response to surface viscosity[J].Proceedings of the National Academy of Sciences of the United States of America,2018,115(6): 1192-1197.
    [112]GNESOTTO F S, MURA F, GLADROW J, et al. Broken detailed balance and non-equilibrium dynamics in living systems: a review[J].Reports on Progress in Physics,2018,81(6): 066601.
    [113]CONIBEAR P B, BAGSHAW C R. Myosin monomer density and exchange in synthetic thick filaments investigated using fluorescence microscopy with single molecule sensitivity[J].Proceedings of Royal Society B,2000,267(1441): 415-421.
    [114]HUMPHREY D, DUGGAN C, SAHA D, et al. Active fluidization of polymer networks through molecular motors[J].Nature,2002,416(6879): 413-416.
    [115]CHAN C J, EKPENYONG A E, GOLFIER S, et al. Myosin Ⅱ activity softens cells in suspension[J].Biophysical Journal,2015,108(8): 1856-1869.
    [116]KOENDERINK G H, PALUCH E K. Architecture shapes contractility in actomyosin networks[J].Current Opinion in Cell Biology,2018,50: 79-85.
    [117]MURRELL M P, GARDEL M. F-actin buckling coordinates contractility and severing in a biomimetic actomyosin cortex[J].Molecular Biology of the Cell,2012,109(51): 20820-20825.
    [118]RONCERAY P, BROEDERSZ C P, LENZ M. Fiber networks amplify active stress[J].Proceedings of the National Academy of Sciences of the United States of America,2016,113(11): 2827-2832.
    [119]ZEMEL A, BISHOFS I B, SAFRAN S A. Active elasticity of gels with contractile cells[J].Physical Review Letters,2006,97(12): 128103.
    [120]JANSEN K A, BACABAC R G, PIECHOCKA I K, et al. Cells actively stiffen fibrin networks by generating contractile stress[J].Biophysical Journal,2013,105(10): 2240-2251.
    [121]WOLLRAB V, BELMONTE J M, BALDAUF L, et al. Polarity sorting drives remodeling of actin-myosin networks[J].Journal of Cell Science,2019,132(4): 219717.
    [122]FOSTER P J, FURTHAUER S, SHELLEY M J, et al. Active contraction of microtubule networks[J].eLife,2015,4: e10837.
    [123]MACKINTOSH F C, LEVINE A J. Nonequilibrium mechanics and dynamics of motor-activated gels[J].Physical Review Letters,2008,100(1): 018104.
    [124]SHEINMAN M, BROEDERSZ C P, MACKINTOSH F C. Actively stressed marginal networks[J].Physical Review Letters,2012,109(23): 238101.
    [125]GONG B, WEI X, QIAN J, et al. Modeling and simulations of the dynamic behaviors of actin-based cytoskeleton networks[J].ACS Biomaterials Science & Engineering,2019,5(8): 3720-3734.
    [126]MIZUNO D, TARDIN C, SCHMIDT C F, et al. Nonequilibrium mechanics of active cytoskeletal networks[J].Science,2007,315(5810): 370-373.
    [127]GKRETSI V, STYLIANOPOULOS T. Cell adhesion and matrix stiffness: coordinating cancer cell invasion and metastasis[J].Frontiers in Oncology,2018,8: 145.
    [128]CHEN P, SHENOY V B. Strain stiffening induced by molecular motors in active crosslinked biopolymer networks[J].Soft Matter,2011,7(2): 355-358.
    [129]MAK M, ZAMAN M H, KAMM R D, et al. Interplay of active processes modulates tension and drives phase transition in self-renewing, motor-driven cytoskeletal networks[J].Nature Communications,2016,7(5): 10323.
    [130]FREEDMAN S L, BANERJEE S, HOCKY G M, et al. A versatile framework for simulating the dynamic mechanical structure of cytoskeletal networks[J].Biophysical Journal,2017,113(2): 448-460.
    [131]CARLIER M F, SHEKHAR S. Global treadmilling coordinates actin turnover and controls the size of actin networks[J].Nature Reviews Molecular Cell Biology,2017,18(6): 389-401.
    [132]BROUHARD G J, RICE L M. Microtubule dynamics: an interplay of biochemistry and mechanics[J].Nature Reviews Molecular Cell Biology,2018,19(7): 451-463.
    [133]HIRAIWA T, SALBREUX G. Role of turnover in active stress generation in a filament network[J].Physical Review Letters,2016,116(18): 188101.
    [134]MCFADDEN W M, MCCALL P M, GAEDEL M L, et al. Filament turnover tunes both force generation and dissipation to control long-range flows in a model actomyosin cortex[J].PLOS Computational Biology,2017,13(12): 1005811.
    [135]TAN T H, MALIK-GARBI M, ABU-SHAH E, et al. Self-organized stress patterns drive state transitions in actin cortices[J].Science Advances,2018,4(6): eaar2847.
    [136]WUEHR M, FREEMAN R M, PRESLER M, et al. Deep proteomics of the xenopus laevis egg using an mRNA-derived reference database[J].Current Biology,2014,24(13): 1467-1475.
    [137]SCHMOLLER K M, FERNANDEZ P, AREVALO R C, et al. Cyclic hardening in bundled actin networks[J].Nature Communications,2010,1: 134.
    [138]MAJUMDAR S, FOUCARD L C, LEVINE A J, et al. Mechanical hysteresis in actin networks[J].Soft Matter,2018,14(11): 2052-2058.
    [139]STACHEL I, SCHWARZENBOLZ U, HENLE T, et al. Cross-linking of type Ⅰ collagen with microbial transglutaminase: identification of cross-linking sites[J].Biomacromolecules,2010,11(3): 698-705.
    [140]MUNSTER S, JAWERTH L M, LESILIE B A, et al. Strain history dependence of the nonlinear stress response of fibrin and collagen networks[J].Proceedings of the National Academy of Sciences of the United States of America,2013,110(30): 12197-12202.
    [141]KIM J, FENG J, JINES C A R, et al. Stress-induced plasticity of dynamic collagen networks[J].Nature Communications,2017,8(1): 842.
    [142]BAN E, FRANKLIN J M, NAM S, et al. Mechanisms of plastic deformation in collagen networks induced by cellular forces[J].Biophysical Journal,2018,114(2): 450-461.
    [143]FALZONE T T, LENZ M, KOVZR D R, et al. Assembly kinetics determine the architecture of alpha-actinin crosslinked F-actin networks[J].Nature Communications,2012,3: 861.
    [144]LIELEG O, KAYSER J, BRAMBILLA G, et al. Slow dynamics and internal stress relaxation in bundled cytoskeletal networks[J].Nature Materials,2011,10(3): 236-242.
    [145]FALLQVIST B, KULACHENKO A, KROOON M. Modelling of cross-linked actin networks : influence of geometrical parameters and cross-link compliance[J].Journal of Theoretical Biology,2014,350: 57-69.
    [146]BURLA F, DUSSI S, MARTINEZ-TORRES C, et al. Connectivity and plasticity determine collagen network fracture[J].Proceedings of the National Academy of Sciences of the United States of America,2020,117(15): 8326-8334.
    [147]MULLA Y, OLIVERI G, OVERVELDE J T B, et al. Crack initiation in viscoelastic materials[J].Physical Review Letters,2018,120(26): 268002.
    [148]MULLA Y, KOENDERINK G H. Crosslinker mobility weakens transient polymer networks[J].Physical Review E,2018,98(6): 062503.
    [149]WANG H L, ABHILASH A S, CHEN C S, et al. Long-range force transmission in fibrous matrices enabled by tension-driven alignment of fibers[J].Biophysical Journal,2014,107(11): 2592-2603.
    [150]LIN S T, LIU J, LIU X Y, et al. Muscle-like fatigue-resistant hydrogels by mechanical training[J].Proceedings of the National Academy of Sciences of the United States of America,2019,116(21): 10244-10249.
    [151]CHAUDHURI O, GU L, DARNELL M, et al. Substrate stress relaxation regulates cell spreading[J].Nature Communications,2015,6: 6365.
    [152]CHAUDHURI O, GU L, KLIMPERS D, et al. Hydrogels with tunable stress relaxation regulate stem cell fate and activity[J].Nature Materials,2016,15(3): 326-334.
    [153]JASNIN M, ASANO S, GOUIN E, et al. Three-dimensional architecture of actin filaments in Listeria monocytogenes comet tails[J].Proceedings of the National Academy of Sciences of the United States of America,2013,110(51): 20521-20526.
    [154]DOBRAMYSL U, PAPOIAN G A, ERBAN R. Steric effects induce geometric remodeling of actin bundles in filopodia[J].Biophysical Journal,2016,110(9): 2066-2075.
    [155]LEIJNSE N, ODDERSHEDE L B, BENDIX P M. Helical buckling of actin inside filopodia generates traction[J].Proceedings of the National Academy of Sciences of the United States of America,2015,112(1): 136-141.
    [156]CLAESSENS M M A E, BATHE M, FREY E, et al. Actin-binding proteins sensitively mediate F-actin bundle stiffness[J].Nature Materials,2006,5(9): 748-753.
    [157]LI T, OLOYEDE A, GU Y T. F-actin crosslinker: a key player for the mechanical stability of filopodial protrusion[J].Journal of Applied Physics,2013,114(21): 214701.
    [158]BATHE M, HEUSSINGER C, CLAESSENS M M A E, et al. Cytoskeletal bundle mechanics[J].Biophysical Journal,2008,94(8): 2955-2964.
    [159]WANG Y Z, QIAN J. Buckling of filamentous actin bundles in filopodial protrusions[J].Acta Mechanica Sinica,2019,35(2): 365-375.
    [160]CHEN J, KANAI Y, COWAN N J, et al. Projection domains of MAP2 and tau determine spacings between microtubules in dendrites and axons[J].Nature,1992,360(6405): 674-677.
    [161]KRIEG M, DUNN A R, GOODMMAN M B. Mechanical control of the sense of touch by β-spectrin[J].Nature Cell Biology,2014,16(3): 224-233.
    [162]LETERRIER C. A dual role for βⅡ-spectrin in axons[J].Proceedings of the National Academy of Sciences of the United States of America,2019,116(31): 15324-15326.
    [163]FAN A, TOFANGCHI A, KANDEL M, et al. Coupled circumferential and axial tension driven by actin and myosin influences in vivo axon diameter[J].Scientific Reports,2017,7(1): 1-12.
    [164]DUBEY S, BHEMBRE N, BODAS S, et al. The axonal actin-spectrin lattice acts as a tension buffering shock absorber[J].eLife,2020,9: e51772.
    [165]WANG Y Z, WEI X, GONG B, et al. Coarse-grained modeling and mechanical behaviors of actin-spectrin-microtubule complex in axonal cytoskeleton[J].International Journal of Applied Mechanics,2021,〖STHZ〗19:1738-1749.
    [166]ZHANG Y H, ABIRAMAN K, LI H, et al. Modeling of the axon membrane skeleton structure and implications for its mechanical properties[J].PLOS Computational Biology,2017,13(2): e1005407.
    [167]SOHEILYPOUR M, PEYRO M, PETER S J, et al. Buckling behavior of individual and bundled microtubules[J].Biophysical Journal,2015,108(7): 1718-1726.
    [168]BANERJEE S, GARDEL M L, SCHWARZ U S. The actin cytoskeleton as an active adaptive material[J].Annual Review of Condensed Matter Physics,2020,11: 421-439.
    [169]KADZIK R S, HOMA K E, KOVAR D R. F-actin cytoskeleton network self-organization through competition and cooperation[J].Annual Review of Cell and Developmental Biology,2020,36: 35-60.
    [170]SWWTHARAMANE S, ETIENNE-MANNEVILLE S. Cytoskeletal crosstalk in cell migration[J].Trends in Cell Biology,2020,30(9):720-735.
    [171]VIGNAUD T, COPOS C, LETERRIER C, et al. Stress fibres are embedded in a contractile cortical network[J].Nature Materials,2021,20(3): 410-420.
  • 加载中
计量
  • 文章访问数:  793
  • HTML全文浏览量:  173
  • PDF下载量:  123
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-08
  • 修回日期:  2021-10-18
  • 刊出日期:  2021-10-01

目录

    /

    返回文章
    返回