留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑材料参数不确定性的皮肤伤口缝合力预测模型

温广全 纪小刚 段玉顺 邓霖

温广全, 纪小刚, 段玉顺, 邓霖. 考虑材料参数不确定性的皮肤伤口缝合力预测模型[J]. 应用数学和力学, 2023, 44(4): 441-449. doi: 10.21656/1000-0887.430067
引用本文: 温广全, 纪小刚, 段玉顺, 邓霖. 考虑材料参数不确定性的皮肤伤口缝合力预测模型[J]. 应用数学和力学, 2023, 44(4): 441-449. doi: 10.21656/1000-0887.430067
WEN Guangquan, JI Xiaogang, DUAN Yushun, DENG Lin. A Prediction Model for Skin Wound Suture Forces With Uncertain Material Parameters[J]. Applied Mathematics and Mechanics, 2023, 44(4): 441-449. doi: 10.21656/1000-0887.430067
Citation: WEN Guangquan, JI Xiaogang, DUAN Yushun, DENG Lin. A Prediction Model for Skin Wound Suture Forces With Uncertain Material Parameters[J]. Applied Mathematics and Mechanics, 2023, 44(4): 441-449. doi: 10.21656/1000-0887.430067

考虑材料参数不确定性的皮肤伤口缝合力预测模型

doi: 10.21656/1000-0887.430067
基金项目: 

国家自然科学基金项目 52175234

国家自然科学基金项目 51105175

江苏省“六大人才高峰”项目 JXQC-006

详细信息
    作者简介:

    温广全(1998—),男,硕士生(E-mail: wenguangquan163@163.com)

    通讯作者:

    纪小刚(1977—),男,副教授,博士,硕士生导师(通讯作者. E-mail: bhearts@jiangnan.edu.cn)

  • 中图分类号: O343.5

A Prediction Model for Skin Wound Suture Forces With Uncertain Material Parameters

  • 摘要: 为快速、有效地评估缝合皮肤伤口所需的力,运用非线性有限元方法,对不同尺寸、不同材料参数皮肤伤口进行缝合力数值计算;以计算结果为样本,采用椭球基神经网络模型,构建了皮肤伤口缝合力预测模型;考虑到皮肤材料参数的不确定性会影响数值计算结果的可靠性,预测模型采用Monte-Carlo方法进行了皮肤材料参数的不确定性传播分析;最后,以猪皮为实验材料进行伤口缝合力预测分析与测量实验,验证了该方法的可靠性.结果表明,间断缝合椭圆形皮肤伤口,缝合点处所需缝合力按缝合针次呈先增后减趋势,峰值力发生在伤口中线前,40 mm×10 mm伤口,缝合力峰值约为1.7 N;40 mm×14 mm伤口,缝合力峰值约为2.5 N.受材料参数不确定性影响,缝合力预测结果最高有±0.6 N的波动.构建预测模型的理论方法,为皮肤等生物软组织材料参数不确定性传播问题提供了有效的解决思路,同时为机器人手术缝合提供重要的力学参考信息.
  • 图  1  皮肤伤口轮廓

    Figure  1.  The skin wound profile

    图  2  皮肤伤口有限元简化模型

    Figure  2.  The simplified finite element model for the skin wound

    图  3  EBF神经网络基本结构

    Figure  3.  The basic structure of the EBF neural network

    图  4  猪皮单轴拉伸试样尺寸、试验设备及应力-应变曲线

    Figure  4.  Sizes, the test equipment and the stress-strain curve of the pig skin uniaxial tensile test specimen

    图  5  皮肤组织预应力释放的反向模拟边界条件及计算结果

    Figure  5.  Boundary conditions and calculation results of the reverse simulation of prestress release in the skin tissue

    图  6  伤口尺寸及缝合力测量方法

    Figure  6.  Measurement of wound sizes and suture forces

    图  7  伤口缝合力测量结果

      为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  7.  Wound suture force measurement results

    图  8  有限元模拟缝合过程

    Figure  8.  The finite element simulation of the suture process

    图  9  3种代理模型拟合精度

    Figure  9.  The fitting precision of 3 proxy models

    图  10  输出响应概率分布图

    Figure  10.  The output the response probability distribution graph

    图  11  伤口缝合力预测结果与实验测量结果对比

    Figure  11.  The prediction results of wound suture forces compared with the experimental results

    表  1  人体皮肤材料参数取值范围

    Table  1.   Parameter value ranges of human skin materials

    parameter C10/kPa k1/kPa k2 σX/kPa σY/kPa
    value range 2.387~100.7 0.38~24 530 0.133~5 984.2 0~50 0~50
    下载: 导出CSV
  • [1] 付宜利, 潘博. 微创外科手术机器人技术研究进展[J]. 哈尔滨工业大学学报, 2019, 51(1): 1-15. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201901001.htm

    FU Yili, PAN Bo. Research progress of surgical robot for minimally invasive surgery[J]. Journal of Harbin Institute of Technology, 2019, 51(1): 1-15. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201901001.htm
    [2] REILEY C E, AKINBIYI T, BURSCHKA D, et al. Effects of visual force feedback on robot-assisted surgical task performance[J]. Journal of Thoracic and Cardiovascular Surgery, 2008, 135(1): 196-201. doi: 10.1016/j.jtcvs.2007.08.043
    [3] JUNG W J, KWAK K S, LIM S C. Vision-based suture tensile force estimation in robotic surgery[J]. Sensors, 2020, 21(1): 110. doi: 10.3390/s21010110
    [4] PISSARENKO A, MEYERS M A. The materials science of skin: analysis, characterization, and modeling[J]. Progress in Materials Science, 2020, 110: 100634. doi: 10.1016/j.pmatsci.2019.100634
    [5] CAPEK L, JACQUET E, DZAN L, et al. The analysis of forces needed for the suturing of elliptical skin wounds[J]. Medical & Biological Engineering & Computing, 2012, 50(2): 193-198.
    [6] 龚博, 林骥, 王彦中, 等. 细胞骨架与细胞外基质的力学建模与分析[J]. 应用数学和力学, 2021, 42(10): 1024-1044. doi: 10.21656/1000-0887.420302

    GONG Bo, LIN Ji, WANG Yanzhong, et al. Mechanical modeling and analyses of cytoskeleton and extracellular matrix[J]. Applied Mathematics and Mechanics, 2021, 42(10): 1024-1044. (in Chinese) doi: 10.21656/1000-0887.420302
    [7] 周磊, 王世斌, 李林安, 等. 皮肤力学的研究进展[J]. 实验力学, 2020, 35(6): 955-969. https://www.cnki.com.cn/Article/CJFDTOTAL-SYLX202006001.htm

    ZHOU Lei, WANG Shibin, LI Linan, et al. Advances in skin mechanics[J]. Journal of Experimental Mechanics, 2020, 35(6): 955-969. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYLX202006001.htm
    [8] HOLZAPFEL G A, GASSER T C, OGDEN R W. A new constitutive framework for arterial wall mechanics and a comparative study of material models[J]. Journal of Elasticity & the Physical Science of Solids, 2000, 61(1/3): 1-48.
    [9] GASSER T C, OGDEN R W, HOLZAPFEL G A. Hyperelastic modelling of arterial layers with distributed collagen fibre orientations[J]. Journal of the Royal Society Interface, 2006, 3(6): 15-35. doi: 10.1098/rsif.2005.0073
    [10] TONGE T K, VOO L M, NGUYEN T D. Full-field bulge test for planar anisotropic tissues, part Ⅱ: a thin shell method for determining material parameters and comparison of two distributed fiber modeling approaches[J]. Acta Biomaterialia, 2012, 9(4): 5926-5942.
    [11] PINAR A. Recent progress of uncertainty quantification in small-scale materials science[J]. Progress in Materials Science, 2020, 117: 100723.
    [12] 陈鑫, 王刚, 叶正寅, 等. CFD不确定度量化方法研究综述[J]. 空气动力学学报, 2021, 39(4): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX202104001.htm

    CHEN Xin, WANG Gang, YE Zhengyin, et al. A review of uncertainty quantification methods for computational fluid dynamics[J]. Acta Aerodynamica Sinica, 2021, 39(4): 1-13. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX202104001.htm
    [13] FISHMAN G. Monte Carlo: Concepts, Algorithms and Applications[M]. New York: Springer, 1996.
    [14] 毛凤山, 陈昌富, 朱世民. 代理模型方法及其在岩土工程中的应用综述[J]. 地基处理, 2020, 31(4): 295-306. https://www.cnki.com.cn/Article/CJFDTOTAL-DJCL202004008.htm

    MAO Fengshan, CHEN Changfu, ZHU Shimin. Surrogate model method and its application in geotechnical engineering[J]. Journal of Ground Improvement, 2020, 31(4): 295-306. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DJCL202004008.htm
    [15] 陈浩, 林震, 刘成诚, 等. 基于直接模拟蒙特卡洛方法的真空羽流不确定量化研究[J]. 推进技术, 2020, 41(1): 73-84. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS202001008.htm

    CHEN Hao, LIN Zhen, LIU Chengcheng, et al. Uncertainty quantification of vacuum plume simulations using direct simulation Monte Carlo method[J]. Journal of Propulsion Technology, 2020, 41(1): 73-84. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS202001008.htm
    [16] 李久辉, 卢文喜, 常振波, 等. 考虑参数不确定性的地下水污染源识别[J]. 中国环境科学, 2021, 41(4): 1711-1722. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ202104029.htm

    LI Jiuhui, LU Wenxi, CHANG Zhenbo, et al. Identification of groundwater contamination sources considering parameter uncertainty[J]. China Environmental Science, 2021, 41(4): 1711-1722. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ202104029.htm
    [17] 赵翔, 茹东恒, 王鹏, 等. 基于NARX神经网络方法的汽轮机转子关键部位应力预测[J]. 应用数学和力学, 2021, 42(8): 771-784. doi: 10.21656/1000-0887.410372

    ZHAO Xiang, RU Dongheng, WANG Peng, et al. On the stress prediction of key components in steam turbine rotors based on the NARX neural network[J]. Applied Mathematics and Mechanics, 2021, 42(8): 771-784. (in Chinese) doi: 10.21656/1000-0887.410372
    [18] 周杰, 赵婷婷, 陈青青, 等基于GoogLeNet的混凝土细观模型应力-应变曲线预测[J]. 应用数学和力学, 2022, 43(3): 290-299. doi: 10.21656/1000-0887.420136

    ZHOU Jie, ZHAO Tingting, CHEN Qingqing, et al. Prediction of concrete meso-model stress-strain curves based on GoogLeNet[J]. Applied Mathematics and Mechanics, 2022, 43(3): 290-299. (in Chinese) doi: 10.21656/1000-0887.420136
    [19] BENITEZ, J M, MONTANS, F J. The mechanical behavior of skin: structures and models for the finite element analysis[J]. Computers & Structures, 2017, 190: 75-107.
    [20] ANNAIDH A N, BRUYERE K, DESTRADE M. Automated estimation of collagen fibre dispersion in the dermis and its contribution to the anisotropic behaviour of skin[J]. Annals of Biomedical Engineering, 2012, 40(8): 1666-1678.
    [21] SULLIVAN T P, EAGLSTEIN W H, DAVIS S C, et al. The pig as model for human wound healing[J]. Wound Repair and Regeneration, 2001, 9(2): 66-76.
    [22] 王楠, 罗岚, 刘勇, 等. 金属构件残余应力测量技术进展[J]. 仪器仪表学报, 2017, 38(10): 2508-2517. https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB201710020.htm

    WANG Nan, LUO Lan, LIU Yong, et al. Research progress on stress measurement technology for metal components[J]. Chinese Journal of Scientific Instrument, 2017, 38(10): 2508-2517. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB201710020.htm
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  357
  • HTML全文浏览量:  151
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-03
  • 修回日期:  2022-06-05
  • 刊出日期:  2023-04-01

目录

    /

    返回文章
    返回