留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一类格竞争系统的双稳周期行波解

李俭

李俭. 一类格竞争系统的双稳周期行波解[J]. 应用数学和力学, 2023, 44(4): 471-479. doi: 10.21656/1000-0887.430071
引用本文: 李俭. 一类格竞争系统的双稳周期行波解[J]. 应用数学和力学, 2023, 44(4): 471-479. doi: 10.21656/1000-0887.430071
LI Jian. Bistable Periodic Traveling Wave Solutions to Lattice Competitive Systems[J]. Applied Mathematics and Mechanics, 2023, 44(4): 471-479. doi: 10.21656/1000-0887.430071
Citation: LI Jian. Bistable Periodic Traveling Wave Solutions to Lattice Competitive Systems[J]. Applied Mathematics and Mechanics, 2023, 44(4): 471-479. doi: 10.21656/1000-0887.430071

一类格竞争系统的双稳周期行波解

doi: 10.21656/1000-0887.430071
详细信息
    作者简介:

    李俭(1998—), 男, 硕士(E-mail: 2084043762@qq.com)

  • 中图分类号: O175.14

Bistable Periodic Traveling Wave Solutions to Lattice Competitive Systems

  • 摘要: 该文研究了一类格竞争系统的双稳周期行波解的存在性.首先, 将两种群竞争系统转化为合作系统;其次, 构造合作系统的上下解, 并建立比较原理, 得到当初始函数满足一定条件时, 解在无穷远处是收敛的;最后, 利用黏性消去法证明系统连接两个稳定周期平衡点的行波解的存在性.
  • [1] BAO X X, WANG Z C. Existence and stability of time periodic traveling waves for a periodic bistable Lotka-Volterra competition system[J]. Journal of Differential Equations, 2013, 255: 2402-2435. doi: 10.1016/j.jde.2013.06.024
    [2] FANG J, ZHAO X Q. Monotone wavefronts for partially degenerate reaction-diffusion systems[J]. Journal of Dynamics and Differential Equations, 2009, 21: 663-680. doi: 10.1007/s10884-009-9152-7
    [3] LI B. Traveling wave solutions in partially degenerate cooperative reaction-diffusion systems[J]. Journal of Differential Equations, 2012, 252(9): 4842-4861. doi: 10.1016/j.jde.2012.01.018
    [4] ZHAO G Y, RUAN S G. Existence, uniqueness and asymptotic stability of time periodic traveling waves for a periodic Lotka-Volterra competition system with diffusion[J]. Journal de Mathématiques Pures et Appliquées, 2011, 95(6): 627-671. doi: 10.1016/j.matpur.2010.11.005
    [5] HAO Y X, LI W T, WANG J B. Propagation dynamics of Lotka-Volterra competition systems with asymmetric dispersal in periodic habits[J]. Journal of Differential Equations, 2021, 300: 185-225. doi: 10.1016/j.jde.2021.07.041
    [6] BAO X X, LI W T, WANG Z C. Time periodic traveling curved fronts in the periodic Lotka-Volterra competition diffusion system[J]. Journal of Dynamics and Differential Equations, 2017, 29: 981-1016. doi: 10.1007/s10884-015-9512-4
    [7] GUO J S, WU C H. Wave propagation for a two-component lattice dynamical system arising in strong competition models[J]. Journal of Differential Equations, 2011, 250: 3504-3533. doi: 10.1016/j.jde.2010.12.004
    [8] GUO J S, WU C H. Traveling wave front for a two-component lattice dynamical system arising in competition models[J]. Journal of Differential Equations, 2012, 252: 4357-4391. doi: 10.1016/j.jde.2012.01.009
    [9] WANG H Y, OU C H. Propagation direction of the traveling wave for the Lotka-Volterra competitive lattice system[J]. Journal of Dynamics and Differential Equations, 2021, 33: 1153-1174. doi: 10.1007/s10884-020-09853-4
    [10] SHEN W X. Traveling waves in time periodic lattice differential equations[J]. Nonlinear Analysis, 2003, 54(2): 319-339. doi: 10.1016/S0362-546X(03)00065-8
    [11] ZHANG K F, ZHAO X Q. Spreading speed and traveling waves for a spatially discrete SIS epidemic model[J]. Nonlinearity, 2008, 21(1): 97-112. doi: 10.1088/0951-7715/21/1/005
    [12] KRUXZKOV S N. First order quasilinear equations in several independent variables[J]. Mathematics of the USSR-Sbornik, 1970, 10: 217-243. doi: 10.1070/SM1970v010n02ABEH002156
    [13] GUO J S, HAMEL F. Front propagation for discrete periodic monostable equations[J]. Mathematische Annalen, 2006, 335: 489-525. doi: 10.1007/s00208-005-0729-0
    [14] CHEN X F, GUO J S, WU C C. Traveling waves in discrete periodic media for bistable dynamics[J]. Archive for Rational Mechanics and Analysis, 2008, 189: 189-236. doi: 10.1007/s00205-007-0103-3
    [15] 陈妍. 时间周期的离散SIS模型的传播动力学[J]. 应用数学和力学, 2022, 43(10): 1155-1163. doi: 10.21656/1000-0887.420350

    CHEN Yan. Propagation dynamics of a discrete SIS model with time periodicity[J]. Applied Mathematics and Mechanics, 2022, 43(10): 1155-1163. (in Chinese) doi: 10.21656/1000-0887.420350
    [16] 郑景盼. 三物种竞争-扩散系统双稳行波解的波速符号[J]. 应用数学和力学, 2021, 42(12): 1296-1305. doi: 10.21656/1000-0887.420093

    ZHENG Jingpan. The wave speed signs for bistable traveling wave solutions in 3-species competition-diffusion systems[J]. Applied Mathematics and Mechanics, 2021, 42(12): 1296-1305. (in Chinese) doi: 10.21656/1000-0887.420093
    [17] SHEN W X. Traveling waves in time almost periodic structures governed by bistable nonlinearities, Ⅱ: existence[J]. Journal of Differential Equations, 1999, 159(1): 55-101. doi: 10.1006/jdeq.1999.3652
    [18] WU S L, HSU C H. Periodic traveling fronts for partially degenerate reaction-diffusion systems with bistable and time-periodic nonlinearity[J]. Advances in Nonlinear Analysis, 2020, 9: 923-957.
  • 加载中
计量
  • 文章访问数:  404
  • HTML全文浏览量:  166
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-07
  • 修回日期:  2022-04-11
  • 刊出日期:  2023-04-01

目录

    /

    返回文章
    返回