留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

横向非均匀温度场作用的FGM夹层圆板热屈曲分析

龚雪蓓 赵伟东 郭冬梅

龚雪蓓, 赵伟东, 郭冬梅. 横向非均匀温度场作用的FGM夹层圆板热屈曲分析[J]. 应用数学和力学, 2023, 44(4): 419-430. doi: 10.21656/1000-0887.430094
引用本文: 龚雪蓓, 赵伟东, 郭冬梅. 横向非均匀温度场作用的FGM夹层圆板热屈曲分析[J]. 应用数学和力学, 2023, 44(4): 419-430. doi: 10.21656/1000-0887.430094
GONG Xuebei, ZHAO Weidong, GUO Dongmei. Thermal Buckling Analysis of FGM Sandwich Circular Plates Under Transverse Nonuniform Temperature Field Actions[J]. Applied Mathematics and Mechanics, 2023, 44(4): 419-430. doi: 10.21656/1000-0887.430094
Citation: GONG Xuebei, ZHAO Weidong, GUO Dongmei. Thermal Buckling Analysis of FGM Sandwich Circular Plates Under Transverse Nonuniform Temperature Field Actions[J]. Applied Mathematics and Mechanics, 2023, 44(4): 419-430. doi: 10.21656/1000-0887.430094

横向非均匀温度场作用的FGM夹层圆板热屈曲分析

doi: 10.21656/1000-0887.430094
基金项目: 

国家自然科学基金项目 52168053

详细信息
    作者简介:

    龚雪蓓(1999—),女,硕士生(E-mail: 754928145@qq.com)

    通讯作者:

    赵伟东(1972—),男,副教授,硕士,硕士生导师(通讯作者. E-mail: zhwd.xbl@163.com)

  • 中图分类号: TU43

Thermal Buckling Analysis of FGM Sandwich Circular Plates Under Transverse Nonuniform Temperature Field Actions

  • 摘要: 基于von Kármán几何非线性板理论,导出了受横向非均匀温度场作用的幂律型功能梯度材料(FGM)夹层圆板的位移型几何非线性控制方程. 考虑不可移夹紧边界条件,通过求解线性特征值问题,得到了系统的有量纲临界屈曲温度差解析公式. 另外,运用打靶法计算了非线性常微分方程两点边值问题. 考察了几何参数、组分材料特性、梯度指数、温度场参数和层厚比对FGM夹层圆板的临界屈曲温度差、热过屈曲平衡路径和平衡构形的影响. 当厚径比、梯度层相对厚度和梯度指数增加时,FGM夹层圆板临界屈曲温度差均单调增加;当半径和总厚度给定时,随FGM层相对厚度增加,FGM夹层圆板后屈曲变形显著减小.
  • 图  1  FGM夹层圆板的几何和坐标系

    Figure  1.  Geometry and the coordinate system of FGM sandwich circular plates

    图  2  不同的温度级数项数目对应的FGM夹层圆板热屈曲平衡路径

    Figure  2.  Thermal buckling equilibrium paths of FGM sandwich circular plates corresponding to different numbers of temperature series terms

    图  3  厚径比对FGM夹层圆板的热过屈曲平衡路径的影响

    Figure  3.  Effects of thickness-radius ratios on thermal postbuckling equilibrium paths of FGM sandwich circular plates

    图  4  梯度指数对FGM夹层圆板的热过屈曲平衡路径的影响

    Figure  4.  Effects of gradient indexes on thermal postbuckling equilibrium paths of FGM sandwich circular plates

    图  5  层厚比对FGM夹层圆板的热过屈曲平衡路径的影响

    Figure  5.  Effects of the layer-thickness ratios on thermal postbuckling equilibrium paths of FGM sandwich circular plates

    图  6  不同厚度下FGM夹层圆板的热过屈曲平衡构形

    Figure  6.  Thermal postbuckling equilibrium configurations of FGM sandwich circular plates with different thicknesses

    图  7  不同层厚比的FGM夹层圆板的热过屈曲平衡构形

    Figure  7.  Thermal postbuckling equilibrium configurations of FGM sandwich circular plates with different layer-thickness ratios

    图  8  不同梯度指数的FGM夹层圆板的热过屈曲平衡构形

    Figure  8.  Thermal postbuckling equilibrium configurations of FGM sandwich circular plates with different gradient indices

    表  1  金属和陶瓷组分的材料特性

    Table  1.   Material properties of metal and ceramic

    material property aluminum(Al) ceramic(Al2O3)
    elastic modulus E/GPa 70 380
    thermal expansion coefficient α/℃-1 2.3×10-5 7.4×10-6
    thermal conductivity K/(W/mK) 204 10.4
    Poisson’s ratio μ 0.3 0.3
    下载: 导出CSV

    表  2  具有不同厚径比和梯度指数的FGM圆板在Tl=0 ℃时对应的临界屈曲温度差ΔTcr

    Table  2.   Critical buckling temperature difference ΔTcr of FGM circular plates with different thickness-radius ratios and gradient indexes for Tl=0 ℃

    k h/a
    0.05 0.04 0.03 0.02 0.01
    0 solution in ref. [24] 635.828 405.821 228.898 101.590 25.433
    present solution 636.000 407.040 228.960 101.760 25.440
    0.5 solution in ref. [24] 475.230 304.146 171.083 76.037 19.009
    present solution 475.061 304.039 171.021 76.009 19.002
    1 solution in ref. [24] 384.600 246.153 138.456 61.536 15.384
    present solution 384.453 246.050 138.433 61.512 15.378
    下载: 导出CSV
  • [1] NAJAFIZADEH M M, ESLAMI M R. First-order-theory-based thermoelastic stability of functionally graded material circular plates[J]. AIAA Journal, 2012, 40(7): 1444-1450.
    [2] REDDY J N, CHIN C D. Thermomechanical analysis of functionally graded cylinders and plates[J]. Journal of Thermal Stresses, 1998, 21(6): 593-626. doi: 10.1080/01495739808956165
    [3] SHEN H S. Nonlinear bending response of functionally graded plates subjected to transverse loads and in thermal environments[J]. International Journal of Mechanical Sciences, 2002, 44(3): 561-584. doi: 10.1016/S0020-7403(01)00103-5
    [4] VAN DO V N, CHANG K H, LEE C H. Post-buckling analysis of FGM plates under in-plane mechanical compressive loading by using a mesh-free approximation[J]. Archive of Applied Mechanics, 2019, 89(7): 1421-1446. doi: 10.1007/s00419-019-01512-5
    [5] MA L S, WANG T J. Nonlinear bending and post-buckling of a functionally graded circular plate under mechanical and thermal loading[J]. International Journal of Solids and Structures, 2003, 40(13/14): 3311-3330.
    [6] ZHANG D G, ZHOU H M. Mechanical and thermal post-buckling analysis of FGM rectangular plates with various supported boundaries resting on nonlinear elastic foundations[J]. Thin-Walled Structures, 2015, 89: 142-151.
    [7] LEE W H, HAN S C, PARK W T. A refined higher order shear and normal deformation theory for E-, P-, and S-FGM plates on Pasternak elastic foundation[J]. Composite Structures, 2015, 122: 330-342. doi: 10.1016/j.compstruct.2014.11.047
    [8] 陈明飞, 刘坤鹏, 靳国永, 等. 面内功能梯度三角形板等几何面内振动分析[J]. 应用数学和力学, 2020, 41(2): 156-170. doi: 10.21656/1000-0887.400171

    CHEN Mingfei, LIU Kunpeng, JIN Guoyong, et al. Isogeometric in-plane vibration analysis of functionally graded triangular plates[J]. Applied Mathematics and Mechanics, 2020, 41(2): 156-170. (in Chinese) doi: 10.21656/1000-0887.400171
    [9] SHEN H S, LI S R. Postbuckling of sandwich plates with FGM face sheets and temperature-dependent properties[J]. Composites (Part B): Engineering, 2008, 39(2): 332-344. doi: 10.1016/j.compositesb.2007.01.004
    [10] ZENKOUR A M, SOBHY M. Thermal buckling of various types of FGM sandwich plates[J]. Composite Structures, 2010, 93(1): 93-102. doi: 10.1016/j.compstruct.2010.06.012
    [11] WANG Z X, SHEN H S. Nonlinear analysis of sandwich plates with FGM face sheets resting on elastic foundations[J]. Composite Structures, 2011, 93(10): 2521-2532. doi: 10.1016/j.compstruct.2011.04.014
    [12] ALIBEIGLOO A. Thermo elasticity solution of sandwich circular plate with functionally graded core using generalized differential quadrature method[J]. Composite Structures, 2016, 136: 229-240. doi: 10.1016/j.compstruct.2015.10.012
    [13] MAHI A, BEDIA E A A, TOUNSI A. A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates[J]. Applied Mathematical Modelling, 2015, 39(9): 2489-2508. doi: 10.1016/j.apm.2014.10.045
    [14] LI D, DENG Z, XIAO H, et al. Bending analysis of sandwich plates with different face sheet materials and functionally graded soft core[J]. Thin-Walled Structures, 2018, 122: 8-16. doi: 10.1016/j.tws.2017.09.033
    [15] VAN DO V N, LEE C H. Numerical investigation on post-buckling behavior of FGM sandwich plates subjected to in-plane mechanical compression[J]. Ocean Engineering, 2018, 170: 20-42. doi: 10.1016/j.oceaneng.2018.10.007
    [16] ZHAO W. Nonlinear axisymmetric thermomechanical response of FGM circular plates[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42(7): 3-10.
    [17] HUANG C L, SANDMAN B E. Large amplitude vibrations of a rigidly clamped circular plate[J]. International Journal of Non-Linear Mechanics, 1971, 6(4): 451-468. doi: 10.1016/0020-7462(71)90043-6
    [18] LI S R, ZHANG J H, ZHAO Y G. Nonlinear thermomechanical post-buckling of circular FGM plate with geometric imperfection[J]. Thin-Walled Structures, 2007, 45(5): 528-536. doi: 10.1016/j.tws.2007.04.002
    [19] VAN DO V N, LEE C H. Nonlinear thermal buckling analyses of functionally graded circular plates using higher-order shear deformation theory with a new transverse shear function and an enhanced mesh-free method[J]. Acta Mechanica, 2018, 229: 3787-3811. doi: 10.1007/s00707-018-2190-7
    [20] REDDY J N, WANG C M, KITIPORNCHAI S. Axisymmetric bending of functionally graded circular and annular plates[J]. European Journal of Mechanics A: Solids, 1999, 18(2): 185-199. doi: 10.1016/S0997-7538(99)80011-4
    [21] 王雪, 赵伟东. 功能梯度梁在热-机械荷载作用下的几何非线性分析[J]. 应用数学和力学, 2019, 40(5): 508-517. doi: 10.21656/1000-0887.390201

    WANG Xue, ZHAO Weidong. Geometrically nonlinear analysis of functionally graded beam under thermomechanical loading[J]. Applied Mathematics and Mechanics, 2019, 40(5): 508-517. (in Chinese) doi: 10.21656/1000-0887.390201
    [22] 李世荣, 苏厚德, 程昌钧. 热环境中粘贴压电层功能梯度材料梁的自由振动[J]. 应用数学和力学, 2009, 30(8): 907-918. doi: 10.3879/j.issn.1000-0887.2009.08.003

    LI Shirong, SU Houde, CHENG Changjun. Free vibration of functionally graded material beams with surface-bonded piezoelectric layers in thermal environment[J]. Applied Mathematics and Mechanics, 2009, 30(8): 907-918. (in Chinese) doi: 10.3879/j.issn.1000-0887.2009.08.003
    [23] LIS R, BATRA R C, MA L S. Vibration of thermally post-buckled orthotropic circular plate[J]. Journal of Thermal Stresses, 2007, 30(1): 43-57. doi: 10.1080/01495730600897161
    [24] NAJAFIZADEH M M, HEDAYATI B. Refined theory for thermoelastic stability of functionally graded circular plates[J]. Journal of Thermal Stresses, 2004, 27(9): 857-880. doi: 10.1080/01495730490486532
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  445
  • HTML全文浏览量:  154
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-21
  • 修回日期:  2022-05-05
  • 刊出日期:  2023-04-01

目录

    /

    返回文章
    返回